若(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),則
a1
2
+
a2
22
+…+
a2013
22013
的值為(  )
A、-1B、0C、2D、-2
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:把x=0代入已知的式子可得a0=1,把x=
1
2
代入已知的式子可得:0=a0+
a1
2
+
a2
22
+…+
a2013
22013
,計算可得答案.
解答: 解:由題意把x=0代入已知的式子可得:
1=a0,即a0=1,
把x=
1
2
代入已知的式子可得:
0=a0+
a1
2
+
a2
22
+…+
a2013
22013
,
即有
a1
2
+
a2
22
+…+
a2013
22013
=0-a0=-1,
故選A.
點評:本題考查二項式定理的應(yīng)用,給式中的x賦值是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an+1+an=2n-3,若a1=2則a21-a20=( 。
A、9B、7C、5D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0|)的圖象如下圖所示,則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知坐標原點O在圓x2+y2-x+y+m=0外,則m的取值范圍是(  )
A、0<m<
1
2
B、m<
1
2
C、m≤
1
2
D、m>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)一個幾何體的三視圖如圖所示,其中主視圖和左視圖是全等的正三角形,且該幾何體的表面積為3π,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對某同學的6次數(shù)學測試成績(滿分100分)進行統(tǒng)計,作出的莖葉圖如圖所示,給出關(guān)于該同學數(shù)學成績的以下說法:
①中位數(shù)為84;   
②眾數(shù)為85;
③平均數(shù)為85;   
④極差為12.
其中,正確說法的序號是(  )
A、①②B、③④C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
(1)奇函數(shù)f(x)在(-∞,0)上增函數(shù),則(0,+∞)上也是增函數(shù);
(2)命題“若x2-3x+2=0,則x=1”的否命題是“若x2-3x+2=0,則x≠1”;
(3)y=x2-2|x|-3的單調(diào)遞增區(qū)間為[1,+∞);
(4)已知函數(shù)f(x)滿足2f(x)=f(
1
x
)+
3
x
,則f(x)的最小值為2
2

其中正確結(jié)論的是
 
(填寫正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標函數(shù)z=x-y+1的最小值為0,則m的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a=log 
1
2
3,b=(
1
3
0.2,c=2 
1
3
,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

同步練習冊答案