函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0),|φ|≤
π
2
)的圖象的一部分如圖所示,則函數(shù)解析式為( 。
A、f(x)=sin(2x+
π
3
B、f(x)=sin(2x-
π
6
C、f(x)=sin(4x+
π
3
D、f(x)=sin(4x-
π
6
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
解答: 解:由函數(shù)的圖象可得A=1,
1
4
T
=
1
4
ω
=
π
12
+
π
6
=
π
4
,∴ω=2.
再根據(jù)五點法作圖可得2×(-
π
6
)+φ=0,求得φ=
π
3
,故函數(shù)的解析式為f(x)=sin(2x+
π
3
),
故選:A.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯誤的是( 。
A、在△ABC中,“A>B”是“sinA>sinB”的充要條件
B、點(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個對稱中心
C、若|
a
|=1,|
b
|=2,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1
D、“sinα=sinβ”的充要條件是“α+β=(2k+1)π或α-β=2kπ(k∈Z)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P為橢圓上的任意一點,滿足|PF1|+|PF2|=8,△PF1F2的周長為12.
(1)求橢圓的方程;
(2)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)離心率為
2
2

(1)橢圓的左、右焦點分別為F1,F(xiàn)2,A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程;
(2)求b為何值時,過圓x2+y2=t2上一點M(2,
2
)處的切線交橢圓于Q1、Q2兩點,且OQ1⊥OQ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列式子是值:
log2[log3(log464)]+(
16
81
)
-
3
4
0-lne2+lg1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為{an},若S3=3,S6=15,則S9=(  )
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若偶函數(shù)f(x)在[1,3]上為增函數(shù),且有最小值0,則它在[-3,-1]上( 。
A、是減函數(shù),有最小值0
B、是增函數(shù),有最小值0
C、是減函數(shù),有最大值0
D、是增函數(shù),有最大值0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是(  )
A、y=(
1
2
x
B、y=
2
x
C、y=-2x3
D、y=log2(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a4=7,a1+a5=10,則公差d=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案