6.已知函數(shù)f(x)=-$\frac{1}{2}$x2+4x-3lnx在(t,t+1)上存在極值點(diǎn),則實(shí)數(shù)t的取值范圍是(0,1)∪(2,3).

分析 先求解導(dǎo)函數(shù)f′(x),再由“函數(shù)f(x)=-$\frac{1}{2}$x2+4x-3lnx在(t,t+1)上存在極值點(diǎn)”,轉(zhuǎn)化為“f′(x)=0在區(qū)間(t,t+1)上有解”,進(jìn)而求出答案.

解答 解:∵函數(shù)f(x)=-$\frac{1}{2}$x2+4x-3lnx,可知x>0,
∴f′(x)=-x+4$-\frac{3}{x}$,
∵函數(shù)f(x)=-$\frac{1}{2}$x2+4x-3lnx在(t,t+1)上存在極值點(diǎn),
∴f′′(x)=-x+4$-\frac{3}{x}$=0在(t,t+1)上有解
∴$\frac{{x}^{2}-4x+3}{x}$=0在(t,t+1)上有解
∴g(x)=x2-4x+3=0在(t,t+1)上有解,
由x2-4x+3=0得:x=1,或x=3,
∴1∈(t,t+1),
即t∈(0,1),
∴3∈(t,t+1),
即t∈(2,3),
故實(shí)數(shù)t的取值范圍是(0,1)∪(2,3),
故答案為:(0,1)∪(2,3).

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路:當(dāng)函數(shù)是增函數(shù)時(shí),導(dǎo)數(shù)大于等于零恒成立,當(dāng)函數(shù)是減函數(shù)時(shí),導(dǎo)數(shù)小于等于零恒成立,然后轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.注意判別式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=x2-2lnx在x=x0處的切線與直線x+3y+2=0垂直,則x0=(  )
A.$-\frac{1}{2}$或2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若關(guān)于x的方程f(x)=g(x)在$[{\frac{1}{e},e}]$上有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.統(tǒng)計(jì)表明:某型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量y(升)關(guān)于速度x(千米/時(shí))的函數(shù)解析式可表示為y=$\frac{{x}^{2}}{800}$-$\frac{3}{20}$x+8(0<x≤120),已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/時(shí)的速度行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面內(nèi)動(dòng)點(diǎn)P與點(diǎn)A(-3,0)和點(diǎn)B(3,0)的連線的斜率之積為-$\frac{8}{9}$.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡且曲線C,過點(diǎn)(1,0)的直線與曲線C交于M,N兩點(diǎn),記△AMB的面積為S1,△ANB的面積為S2,當(dāng)S1-S2取得最大值時(shí),求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-4lnx}{{x}^{2}}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x1,x2∈[$\frac{1}{e}$,+∞),且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$≤$\frac{k}{{{x}_{1}}^{2}•{{x}_{2}}^{2}}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為120°,$\overrightarrow a=(1,\sqrt{3})$,$|\overrightarrow b|=1$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,已知點(diǎn)G是△ABC的重心,過點(diǎn)G作直線與AB、AC兩邊分別交于M、N兩點(diǎn),且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{6}$$\overrightarrow{AC}$,則$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,則z=2x-2y-1最大值為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案