已知數(shù)列{an}的首項(xiàng)a1=1,并且對任意n∈N*,都有an>0.設(shè)其前n項(xiàng)和為Sn,若以(an,Sn)(n∈N*)為坐標(biāo)的點(diǎn)在曲線y=x(x+1)上運(yùn)動(dòng),則數(shù)列{an}的通項(xiàng)公式為____________.

答案:an=n(n∈N*)  【解析】本題考查公式法求數(shù)列通項(xiàng)公式;據(jù)題意易得Sn=an(an+1),當(dāng)n≥2時(shí)有Sn-1=an-1(an-1+1),兩式相減整理得:an-an-1=1,即數(shù)列{an}為等差數(shù)列,故an=1+(n-1)·1=n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案