19.將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位,所得圖象對應(yīng)的函數(shù)( 。
A.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增B.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞減
C.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增D.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得圖象對應(yīng)的解析式,再利用正弦函數(shù)的單調(diào)性,求得所得圖象對應(yīng)的函數(shù)的單調(diào)區(qū)間,即可得解.

解答 解:將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位長度,
得到y(tǒng)=2sin[2(x-$\frac{π}{2}$)+$\frac{π}{3}$]=2sin(2x-$\frac{2π}{3}$)的圖象,
令2kπ-$\frac{π}{2}$≤2x-$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
可得函數(shù)的單調(diào)遞增區(qū)間為:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
當(dāng)k=0時,單調(diào)遞增區(qū)間為:[$\frac{π}{12}$,$\frac{7π}{12}$],故A正確.
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1,F(xiàn)2,P為雙曲線C上的一點,若$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=\sqrt{{{|{\overrightarrow{P{F_1}}}|}^2}+{{|{\overrightarrow{P{F_2}}}|}^2}}$,$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,則雙曲線C的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù)$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)g(x)=|x|+2|x+2-a|(a∈R).
(1)當(dāng)a=3時,解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2017年1月1日,作為貴陽市打造“千園之城”27個示范性公元之一的泉湖公園正式開園,元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項目向全體市民開放,現(xiàn)從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調(diào)查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列2×2列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
  愿意 不愿意 總計
 男生   
 女生   
 總計   
(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再從中抽取2人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.
參考公式與數(shù)據(jù):
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點P(-1,$\frac{3}{2}$)是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓E的左、右焦點,O是坐標(biāo)原點,PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A,B是橢圓E上兩個動點,滿足:$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ$\overrightarrow{PO}$(0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將一根長為3米的繩子在任意位置剪斷,則剪得兩段的長度都不小于1米的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左右焦點分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點O為圓心a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2,則$\frac{{S}_{△O{F}_{2}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值為(  )
A.$\frac{1}{7}$B.$\frac{2}{9}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,向量$\overrightarrow m=({b,-\sqrt{3}a})$與$\overrightarrow n=({cosA,sinB})$垂直.
(1)求A;
(2)若B+$\frac{π}{12}$=A,a=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案