11.將一根長(zhǎng)為3米的繩子在任意位置剪斷,則剪得兩段的長(zhǎng)度都不小于1米的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 根據(jù)題意確定為幾何概型中的長(zhǎng)度類型,將長(zhǎng)度為3m的繩子分成相等的三段,在中間一段任意位置剪斷符合要求,從而找出中間1m處的兩個(gè)界點(diǎn),再求出其比值.

解答 解:記“兩段的長(zhǎng)都不小于1m”為事件A,
則只能在中間1m的繩子上剪斷,才使得剪得兩段的長(zhǎng)都不小于1m,
所以由幾何概型的公式得到事件A發(fā)生的概率 P(A)=$\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題主要考查概率中的幾何概型,關(guān)鍵是明確概率模型,明確事件的測(cè)度,通過長(zhǎng)度、面積或體積之比來得到概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{1+{x}^{2}}$的值域是( 。
A.{y|y≠0}B.(0,1]C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,則b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)(  )
A.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增B.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞減
C.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增D.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin2ωx-$\frac{1}{2}$(ω>0)的周期為$\frac{π}{2}$,若將其圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的最小值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,點(diǎn)E是PB的中點(diǎn),點(diǎn)F在邊BC上移動(dòng).
(Ⅰ)若F為BC中點(diǎn),求證:EF∥平面PAC;
(Ⅱ)求證:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}和{bn}中,a1=$\frac{1}{2}$,{an}的前n項(xiàng)為Sn,滿足Sn+1+($\frac{1}{2}$)n+1=Sn+($\frac{1}{2}$)n(n∈N*),bn=(2n+1)an,{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{bn}的通項(xiàng)公式bn以及Tn
(2)若T1+T3,mT2,3(T2+T3)成等差數(shù)列,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{2-x}{x+b}$,f(x)的圖象與其反函數(shù)的圖象重合.
(1)求f(x)的解析式;
(2)關(guān)于x的方程ax=f(x)(a>1)是否存在負(fù)實(shí)數(shù)解?寫出你的判斷并給出相應(yīng)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$\overrightarrow{a}$,$\overrightarrow$均是非零向量,則使得|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|成立的一個(gè)充分不必要條件是( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$=-2$\overrightarrow$D.$\overrightarrow{a}$=2$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊(cè)答案