已知圓O:x2+y2=4與x軸的正半軸相交于A點(diǎn),C,D兩點(diǎn)在圓O上,C在第一象限,D在第二象限,C,D的橫坐標(biāo)分別為
10
13
,-
8
5
,則cos∠COD=( 。
A、-
16
65
B、
16
65
C、-
56
65
D、
56
65
考點(diǎn):圓的一般方程
專題:直線與圓
分析:求出C、D兩點(diǎn)的坐標(biāo),利用向量的數(shù)量積求解即可.
解答:解:由題意圓O:x2+y2=4與x軸的正半軸相交于A點(diǎn),C,D兩點(diǎn)在圓O上,C在第一象限,D在第二象限,C,D的橫坐標(biāo)分別為
10
13
,-
8
5
,所以C點(diǎn)的縱坐標(biāo)為:
4-(
10
13
)
2
=
24
13
,D點(diǎn)的縱坐標(biāo)為:
4-(-
8
5
)
2
=
6
5

OC
CD
=4cos∠COD=(
10
13
24
13
)•(-
8
5
,
6
5
)=
64
65
,
cos∠COD=
16
65

故選:B.
點(diǎn)評:本題考查圓的方程的應(yīng)用,向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列x,3x+3,6x+6,…的前十項(xiàng)和等于( 。
A、-1B、-3
C、-1024D、-3069

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+2y-1=0和x軸、y軸分別交于A、B兩點(diǎn),且A、B兩點(diǎn)的距離為
2
2
,則a的值為( 。
A、-1B、-2C、2D、2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校買了120臺電腦,其中甲廠24臺,乙廠36臺,丙廠60臺,現(xiàn)在從其中抽取一個樣本容量為20的樣本,則每個個體被抽到的概率為( 。
A、
1
120
B、
1
20
C、
1
60
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在圓x2+y2-4x-4y+6=0上運(yùn)動,則
x
y
的最小值是( 。
A、
3
B、2-
3
C、2+
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若3sinα-cosα=0,則
1
cos2α+sin2α
的值為( 。
A、
10
3
B、
5
3
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=10,S5=55,則過點(diǎn)P(n,an)(n∈N*)和Q(n+2,an+2)(n∈N*)的直線的一個方向向量坐標(biāo)可以是( 。
A、(2,4)
B、(-1,-1)
C、(-
1
2
,  -1)
D、(-
1
3
,  -
4
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示幾何體中,AB∥CD∥EG,∠ABC=90°,CD=EG=
1
2
AB,平面BCEF⊥平面ABCD,點(diǎn)M為側(cè)面BCEF內(nèi)的一個動點(diǎn),若點(diǎn)M到直線EG的距離與到平面ABCD的距離相等,則點(diǎn)M在側(cè)面BCEF內(nèi)的軌跡是( 。
A、一條線段
B、圓的一部分
C、拋物線的一部分
D、橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C1:x2+y2-2ax+a2-9=0(a∈R)與圓C2:x2+y2+2by+b2-1=0(b∈R)內(nèi)切,則a+b的最大值為( 。
A、2
2
B、4
C、4
2
D、8

查看答案和解析>>

同步練習(xí)冊答案