給定函數(shù)①,②,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( )
A.①②
B.②③
C.③④
D.①④
【答案】分析:本題所給的四個函數(shù)分別是冪函數(shù)型,對數(shù)函數(shù)型,指數(shù)函數(shù)型,含絕對值函數(shù)型,在解答時需要熟悉這些函數(shù)類型的圖象和性質(zhì);①為增函數(shù),②為定義域上的減函數(shù),③y=|x-1|有兩個單調(diào)區(qū)間,一增區(qū)間一個減區(qū)間,④y=2x+1為增函數(shù).
解答:解:①是冪函數(shù),其在(0,+∞)上即第一象限內(nèi)為增函數(shù),故此項(xiàng)不符合要求;
②中的函數(shù)是由函數(shù)向左平移1個單位長度得到的,因?yàn)樵瘮?shù)在(0,+∞)內(nèi)為減函數(shù),故此項(xiàng)符合要求;
③中的函數(shù)圖象是由函數(shù)y=x-1的圖象保留x軸上方,下方圖象翻折到x軸上方而得到的,故由其圖象可知該項(xiàng)符合要求;
④中的函數(shù)圖象為指數(shù)函數(shù),因其底數(shù)大于1,故其在R上單調(diào)遞增,不合題意.
故選B.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性,要注意每類函數(shù)中決定單調(diào)性的元素所滿足的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)①y=xcos(
2
+x),②y=1+sin2(π+x),③y=cos(cos(
π
2
+x))中,偶函數(shù)的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù):①y=
1
x
(x≠0);②y=x2+1;③y=2x;④y=log2x;⑤y=log2(x+
x2+1
).
在這五個函數(shù)中,奇函數(shù)是
 
,偶函數(shù)是
 
,非奇非偶函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)①y=x
1
2
,②y=log
1
2
x
,③y=-|x+1|,④y=2-x-1,其中在區(qū)間[0,+∞)上單調(diào)遞減的函數(shù)序號是(  )
A、②④B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)二模)給定函數(shù):①y=x2;②y=2x;③y=cosx;④y=-x3,其中奇函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的兩個實(shí)根,
(1)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(3)對于(1)中的函數(shù)y=g(a),給定函數(shù)h(x)=c(xlnx-x3),(c<0),若對任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案