如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等且于點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:.
證明過程詳見試題解析.

試題分析:(Ⅰ)要證明平面,就是要在平面內(nèi)找一條直線與直線平行,顯然符合要求;(Ⅱ)要證明平面,就是要在平面內(nèi)找兩條相交直線與垂直.顯然符合要求.
試題解析:(Ⅰ)證明:在矩形中,, 又平面, 平面,所以平面.
(Ⅱ)證明:如圖在矩形中,點(diǎn)的中點(diǎn), 又, 故,.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033133441662.png" style="vertical-align:middle;" />, 平面, 所以平面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是圓的直徑,垂直圓所在的平面,是圓上的點(diǎn).

(1)求證:平面
(2)設(shè)的中點(diǎn),的重心,求證://平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知長方體,點(diǎn)的中點(diǎn).

(1)求證:;
(2)若,試問在線段上是否存在點(diǎn)使得,若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形是正方形,平面,,,,分別為,,的中點(diǎn).

(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn)。

(Ⅰ)求證:平面FGH⊥平面AEB;
(Ⅱ)在線段PC上是否存在一點(diǎn)M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(Ⅰ)求與底面所成角的大。
(Ⅱ)求證:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,OACBD的交點(diǎn),BB1,M是線段B1D1的中點(diǎn).

(1)求證:BM∥平面D1AC;
(2)求證:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,平面 ,下列命題中正確的是 (     )
A.,,則
B.,,,則
C.,,則
D.,,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

四棱錐P-ABCD中,底面ABCD是平行四邊形,,,若平面BDE,則的值為 (   )
A.1B.3C.2D.4

查看答案和解析>>

同步練習(xí)冊答案