19.若$P(A)=\frac{3}{4}$,$P(B)=\frac{1}{4}$,$P(AB)=\frac{1}{2}$,則P(B|A)=$\frac{2}{3}$.

分析 由題意,P(B|A)=$\frac{P(AB)}{P(A)}$,即可得出結(jié)論.

解答 解:由題意,P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{2}{3}$,
故答案為$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查條件概率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法中正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.命題:“若a+bi=1+i(a,b∈R,i為虛數(shù)單位),則a=b=1”為真命題
C.全稱(chēng)命題:“?x∈R,x2>0”的否定命題是:“?x∈R,x2≤0”
D.一個(gè)命題的逆命題為真,則它的逆否命題一定為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)全集是實(shí)數(shù)集R,A={x|2x2-7x+3≤0},B={x|x+a<0}.
(1)當(dāng)a=-2時(shí),求A∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,過(guò)F1的直線(xiàn)l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)若直線(xiàn)y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問(wèn)點(diǎn)O到直線(xiàn)AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.婁底市2016年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如圖:則這組數(shù)據(jù)的中位數(shù)是( 。 
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為m與p,且乙投球3次均未命中的概率為$\frac{1}{64}$,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx等于(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給出下列一段推理:若一條直線(xiàn)平行于平面,則這條直線(xiàn)平行于平面內(nèi)所有直線(xiàn).已知直線(xiàn)a?平面α,直線(xiàn)b?平面α,且a∥α,所以a∥b.上述推理的結(jié)論不一定是正確的,其原因是(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,$cosB=\frac{3}{5}$,AC=5,AB=6,則角C的正弦值為( 。
A.$\frac{24}{25}$B.$\frac{16}{25}$C.$\frac{9}{25}$D.$\frac{7}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案