在△ABC中,若b2tanA=a2tanB,則△ABC的形狀是


  1. A.
    直角三角形
  2. B.
    等腰或直角三角形
  3. C.
    等腰三角形
  4. D.
    等邊三角形
B
分析:三角形ABC中,利用正弦定理化簡a2tanB=b2tanA,再利用二倍角的正弦即可得到sin2A=sin2B,從而得到:A=B或A+B=,問題即可解決.
解答:∵三角形ABC中,a2tanB=b2tanA,
∴由正弦定理得:,
∵sinA•sinB>0,
所以sin2A=sin2B,又A、B為三角形中的角,
∴2A=2B或2A=π-2B,
∴A=B或A+B=
故選B.
點評:本題考查三角形的形狀判斷,著重考查正弦定理的應用及二倍角的正弦及誘導公式,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若b2+c2=a2+bc,則A=( 。
A、30°B、45°C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若b2+c2-a2=-
3
bc
,則A=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若  b2+c2-a2=bc,則A=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若b2+c2-
2
bc=a2,且
a
b
=
2
,則C等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若b2=ac,c=2a,則cosB等于(  )

查看答案和解析>>

同步練習冊答案