甲、乙兩人同時參加奧運志愿者的選拔賽,已知在備選的10道題中,甲能答對其中的6題,乙能答對其中的8題,規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才能入選.
(1)求甲答對試題數(shù)的分布列及數(shù)學期望;
(2)求甲、乙兩人至少有一人入選的概率.
(1)
(2)甲、乙兩人于少有一人考試合格的概率為
解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

       4分
的分布列為
   
0
1
2
3
P




   甲答對試題數(shù)的數(shù)學期望為
  6分
(2)設甲、乙兩人考試合格的事件分別為A、B,則
   9分
因為事件A、B相互獨立,甲、乙兩人考試均不合格的概率為

甲、乙兩人至少有一人考試合格的概率為
答:甲、乙兩人于少有一人考試合格的概率為  12分
另解:甲、乙兩人至少有一個考試合格的概率為

答:甲、乙兩人于少有一人考試合格的概率為 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某同學參加3門課程的考試,假設該同學第一門課程取得優(yōu)秀成績的概率為。第二、第三門課程取得優(yōu)秀成績的概率均為,且不同課程是否取得優(yōu)秀成績相互獨立。
(1)求該生恰有1門課程取得優(yōu)秀成績的概率;
(2)求該生取得優(yōu)秀成績的課程門數(shù)X的期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設隨機變量ξ~N(μ,σ2 ),且 P(ξ)= P(ξ),則c ="(  " )(  C  )
A.σ2B.σC.μD.–μ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
2010年上海世博會大力倡導綠色出行,并提出在世博園區(qū)參觀時可以通過植樹的方式來抵消因出行產(chǎn)生的碳排放量,某游客計劃在游園期間種植n棵樹,已知每棵樹是否成活互不影響,成活率都為,用表示他所種植的樹中成活的棵數(shù),的數(shù)學期望為E,方差為D
(I)       若n=1,求D的最大值;
(II)     已知E=3,標準差,試求n與p的值并寫出的分布列。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)某突發(fā)事件,在不采取任何預防措施的情況下發(fā)生的概率為,一旦發(fā)生,將造成某公司300萬元的損失.現(xiàn)有甲、乙兩種相互獨立的預防措施可供選擇,單獨采用甲、乙預防措施所需的費用分別為40萬元和20萬元,采用相應預防措施后此突發(fā)事件不發(fā)生的概率分別為.若預防方案允許甲、乙兩種預防措施單獨采用、同時采用或都不采用,請分別計算這幾種預防方案的總費用,并指出哪一種預防方案總費用最少.
(注:總費用 = 采取預防措施的費用+發(fā)生突發(fā)事件損失的期望值)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某班有50名學生,一次考試的成績服從正態(tài)分布. 已知,估計該班數(shù)學成績在110分以上的人數(shù)為______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分12分)
一個口袋巾裝有標號為1,2,3的6個小球,其中標號1的小球有1個,標號2的小球有2個,標號3的小球有3個,現(xiàn)從口袋中隨機摸出2個小球.
(I)求摸出2個小球標號之和為3的概率;
(II)求摸出2個小球標號之和為偶數(shù)的概率;
(III)用表示摸出2個小球的標號之和,寫出的分布列,并求的數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是   ▲   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


隨機變量的概率分布為右表所示,則的值為     。

查看答案和解析>>

同步練習冊答案