9.已知點(diǎn)A(-1,-1),若點(diǎn)P(a,b)為第一象限內(nèi)的點(diǎn),且滿(mǎn)足|AP|=2$\sqrt{2}$,則ab的最大值為1.

分析 |AP|=2$\sqrt{2}$,可得(a+1)2+(b+1)2=8,令$\left\{\begin{array}{l}{a=-1+2\sqrt{2}cosθ}\\{b=-1+2\sqrt{2}sinθ}\end{array}\right.$,θ∈(arcsin$\frac{\sqrt{2}}{4}$,$\frac{π}{2}$-arcsin$\frac{\sqrt{2}}{4}$).則ab=1-2$\sqrt{2}$(sinθ+cosθ)+8sinθcosθ,令sinθ+cosθ=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sinθcosθ=$\frac{{t}^{2}-1}{2}$.再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:∵|AP|=2$\sqrt{2}$,
∴$\sqrt{(a+1)^{2}+(b+1)^{2}}$=2$\sqrt{2}$,(a,b>0).
化為(a+1)2+(b+1)2=8,
令$\left\{\begin{array}{l}{a=-1+2\sqrt{2}cosθ}\\{b=-1+2\sqrt{2}sinθ}\end{array}\right.$,θ∈(arcsin$\frac{\sqrt{2}}{4}$,$\frac{π}{2}$-arcsin$\frac{\sqrt{2}}{4}$).
則ab=1-2$\sqrt{2}$(sinθ+cosθ)+8sinθcosθ,
令sinθ+cosθ=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴ab=1-2$\sqrt{2}$t+4(t2-1)
=4(t-$\frac{\sqrt{2}}{4}$)2-$\frac{7}{2}$≤1,當(dāng)且僅當(dāng)θ=$\frac{π}{4}$時(shí)取等號(hào).
故答案為:1.

點(diǎn)評(píng) 本題考查了兩點(diǎn)之間的距離公式、三角函數(shù)代換與三角函數(shù)的單調(diào)性值域、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在邊長(zhǎng)為2正方形ABCD中,E、F分別是BC、CD的中點(diǎn),則$\overrightarrow{BF}$•$\overrightarrow{DE}$=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列不等式的解集:
(1)2x2+x-3<0;
(2)x(9-x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.四棱錐P-ABCD的四條側(cè)棱長(zhǎng)相等,底面ABCD為正方形,M為PB的中點(diǎn),求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線(xiàn)PD與CM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A{x|-1<x<2},B?{x|-3<x<1},則A∩B=(  )
A.(-3,2)B.(1,2)C.(-1,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn=$\frac{3}{2}({{a_n}-1})$.
(1)求證數(shù)列{an}是等比數(shù)列并求通項(xiàng)公式an
(2)設(shè)bn=2n-1,cn=an•bn,Tn為{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2.
(Ⅰ)求異面直線(xiàn)A1C與B1C1所成角的余弦值大;
(Ⅱ)求三棱錐C-ABC1的體積${V_{C-AB{C_1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)P是圓O:x2+y2=1上任意一點(diǎn),過(guò)點(diǎn)P作PQ⊥y軸于點(diǎn)Q,延長(zhǎng)QP到點(diǎn)M,使$\overrightarrow{QP}=\overrightarrow{PM}$.
(1)求點(diǎn)M的軌跡的方程;
(2)過(guò)點(diǎn)C(m,0)作圓O的切線(xiàn)l,交(1)中曲線(xiàn)E于A,B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若直線(xiàn)m∥平面α,直線(xiàn)n在平面α內(nèi),則直線(xiàn)m與直線(xiàn)n的位置關(guān)系為相交或異面.

查看答案和解析>>

同步練習(xí)冊(cè)答案