求下列函數(shù)的定義域與值域:
(1)y=log2(x-2);
(2)y=log4(x2+8).
解:(1)由x-2>0,得x>2,
所以函數(shù)y=log
2(x-2)的定義域是(2,+∞),值域是R.
(2)因?yàn)閷?duì)任意實(shí)數(shù)x,log
4(x
2+8)都有意義,
所以函數(shù)y=log
4(x
2+8)的定義域是R.
又因?yàn)閤
2+8≥8,
所以log
4(x
2+8)≥log
48=
,
即函數(shù)y=log
4(x
2+8)的值域是[
,+∞).
分析:(1)根據(jù)負(fù)數(shù)和0沒有對(duì)數(shù)得到真數(shù)x-2大于0,即可求出x的范圍即為函數(shù)的定義域,根據(jù)x-2大于0得到函數(shù)的值域?yàn)槿w實(shí)數(shù);
(2)根據(jù)負(fù)數(shù)和0沒有對(duì)數(shù)得到真數(shù)x
2+8大于0,即可求出x的范圍即為函數(shù)的定義域,根據(jù)x
2+8大于等于8得到函數(shù)的值域.
點(diǎn)評(píng):此題考查了函數(shù)定義域及值域的求法,主要考查了對(duì)數(shù)函數(shù)的值域與最值.是一道基礎(chǔ)題.