分析 根據(jù)拋物線的標(biāo)準(zhǔn)方程 求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,利用拋物線的定義可得|PA|+|PF|=|PA|+|PM|≥|AM|,故|AM|(A到準(zhǔn)線的距離)為所求.
解答 解:拋物線標(biāo)準(zhǔn)方程x2=8y,p=4,焦點(diǎn)F(0,2),準(zhǔn)線方程為y=-2.
設(shè)p到準(zhǔn)線的距離為d,則PF=d,
所以求PA+PF的最小值就是求PA+d的最小值
顯然,直接過(guò)A做y=-2的垂線AQ,當(dāng)P是AQ與拋物線的交點(diǎn)時(shí),PA+d有最小值
最小值為AQ=2-(-2)=4,
故答案為4.
點(diǎn)評(píng) 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,得到|PA|+|PF|=|PA|+|PM|≥|AM|,是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{8}$ | B. | $\frac{9}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{{4\sqrt{5}}}{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com