拋物線y2=2px(p>0)的焦點為F,點A,B在拋物線上,且∠AFB=120°,過弦AB中點M作準(zhǔn)線l的垂線,垂足為M1,則
| MM1|
|AB|
的最大值為
3
3
3
3
分析:設(shè)|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MM1|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,進而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.
解答:解:設(shè)|AF|=a,|BF|=b,連接AF、BF
由拋物線定義,得|AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,2|MM1|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°=a2+b2+ab
配方得,|AB|2=(a+b)2-ab,
又∵ab≤(
a+b
2
) 2,
∴(a+b)2-ab≥(a+b)2-
1
4
(a+b)2=
3
4
(a+b)2
得到|AB|≥
3
2
(a+b).
所以
| MM1|
|AB|
1
2
(a+b)
3
2
(a+b)
=
3
3
,
| MM1|
|AB|
的最大值為
3
3

故答案為:
3
3
點評:本題在拋物線中,利用定義和余弦定理求
| MM1|
|AB|
的最大值,著重考查拋物線的定義和簡單幾何性質(zhì)、基本不等式求最值和余弦定理的應(yīng)用等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準(zhǔn)線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( 。
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)上的點M(4,y)到焦點F的距離為5,O為坐標(biāo)原點,則△OFM的面積為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px,(p>0)繞焦點依逆時針方向旋轉(zhuǎn)90°所得拋物線方程為…( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)若拋物線y2=2px(p>0)的焦點到雙曲線x2-y2=1的漸近線的距離為
3
2
2
,則p的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(-1,0)作拋物線y2=2px(p>0)的兩條切線,切點分別為B、C,且△ABC是正三角形,則拋物線方程為
y2=
4
3
x
y2=
4
3
x

查看答案和解析>>

同步練習(xí)冊答案