下列函數(shù):(1)y=x+
1
x
;(2)y=x2+
1
x2
;(3)y=
x2+3
+
1
x2+3
;(4)y=tanθ+
1
tanθ
,其中,最小值是2的為
 
.(填序號)
考點:基本不等式
專題:不等式的解法及應用
分析:利用基本不等式的性質即可判斷出,注意“一正二定三相等”的使用法則.
解答: 解:(1)x<0時,y<0,其最小值不為2;
(2)∵x2>0,∴y=x2+
1
x2
≥2
x2
1
x2
=2,當且僅當x=±1時取等號,其最小值為2;
(3)∵
x2+3
>1,∴y>
3
+
1
3
>2,其最小值大于2;
(4)∵可能tanθ<0,其最小值不為2.
綜上可得:只有(2)的最小值為2.
故答案為:(2).
點評:本題考查了基本不等式的性質,注意“一正二定三相等”的使用法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“若α=
π
4
,則tan α=1”的逆否命題是(  )
A、若α≠
π
4
,則tan α≠1
B、若α=
π
4
,則tan α≠1
C、若tan α≠1,則α≠
π
4
D、若tan α≠1,則α=
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 f(x)是定義在R上的奇函數(shù),且當x>0對,f(x)=
cos
πx
6
,0<x≤8
log2x,x>8
,f(f(-16))=(  )
A、-
1
2
B、-
3
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
ex
a
+
a
ex
是R上的偶函數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(0,+∞)上是增函數(shù);
(Ⅲ)解關于x的不等式f(2x-1)>e+
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)f(x)=(m2-4m+4)xm2-6m+8在(0,+∞)為減函數(shù),則m的值為(  )
A、1或3B、1C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知x<
5
4
,求函數(shù)y=4x-2+
1
4x-5
的最大值.
(2)已知x>0,y>0,且
1
x
+
1
y
=1,求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-1,5,1),
b
=(2,14,-2),2
a
+4
x
=
b
,則
x
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:ax+y-1=0,直線l2:x-y-3=0,若直線l1的傾斜角為
π
4
,則a=
 
;若l1⊥l2,則a=
 
;若l1∥l2,則兩平行直線間的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果二次函數(shù)y=3x2+2(a-1)x+b在區(qū)間(-∞,1)上是減函數(shù),在區(qū)間[1,+∞)上是增函數(shù),那么a的取值集合是
 

查看答案和解析>>

同步練習冊答案