11.平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為30°.

分析 延長(zhǎng)AD,F(xiàn)E交于Q,∠AQF是異面直線EF與BC所成的角,由此能求出異面直線EF與BC所成角.

解答 解:延長(zhǎng)AD,F(xiàn)E交于Q.
∵ABCD是矩形,
∴BC∥AD,
∴∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,由DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.
即異面直線EF與BC所成角為30°.
故答案為:30°.

點(diǎn)評(píng) 本題考查異面直線所成角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知{an}的前n項(xiàng)之和Sn=n2+n,數(shù)列{bn}的通項(xiàng)公式為bn=xn-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,則$\sqrt{2}$cos(α+$\frac{π}{4}$)等于( 。
A.$\frac{7}{5}$B.$\frac{1}{5}$C.-$\frac{7}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.方程|x2-a|-x+2=0(a>0)有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是a>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知變量x,y滿足$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,則z=2x+2y的最小值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=\frac{4^x}{{{4^x}+1}}$,則f(-2016)+f(-2015)+…+f(-1)+f(0)+f(1)+f(2)+…+f(2015)+f(2016)=( 。
A.2016B.2017C.$\frac{4033}{2}$D.4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)$f(x)=x+lg\frac{1+x}{1-x}+5,且f(a)=6,則f(-a)$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項(xiàng),則$\frac{{{a_1}+{a_3}+{a_6}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)奇函數(shù)f(x)=$\left\{\begin{array}{l}{acosx-\sqrt{3}sinx+c,x≥0}\\{cosx+bsinx-c,x<0}\end{array}\right.$,則a+b的值為-1-$\sqrt{3}$.不等式f(x)>f(-x)在x∈[-π,π]上的解集為($\frac{2π}{3}$,π]∪(-$\frac{2π}{3}$,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案