11.上面程序框圖的結(jié)構(gòu)中最突出的邏輯結(jié)構(gòu)及輸出的i的值是( 。
A.當(dāng)型循環(huán)結(jié)構(gòu),-1B.當(dāng)型循環(huán)結(jié)構(gòu),0
C.直到型循環(huán)結(jié)構(gòu),0D.直到型循環(huán)結(jié)構(gòu),-1

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量i的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:本題是先執(zhí)行循環(huán)體,再判斷循環(huán)條件,
故該程序是直到型循環(huán)結(jié)構(gòu),
當(dāng)i=100,99,…,1時,均不滿足退出循環(huán)的條件,
直到i=0時,才滿足退出循環(huán)的條件,
故輸出的i值為0,
故選:C

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一元二次不等式x2+6x+9≤0的解集{x|x=-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若數(shù)列{an}(n∈N*)是等差數(shù)列,則有數(shù)列${b_n}=\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$(n∈N*) 也是等差數(shù)列;類比上述性質(zhì),相應(yīng)地:若數(shù)列{cn}是等比數(shù)列,且cn>0,則有數(shù)列dn=$\root{n}{{{c_1}{c_2}{c_3}…{c_n}}}$ (n∈N*)也是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知程序框圖如圖所示,執(zhí)行該程序,如果輸入x=10,輸出y=4,則在圖中“?”處可填入的算法語句是②、③、④(寫出以下所有滿足條件的序號)
①x=x-1  ②x=x-2  ③x=x-3  ④x=x-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果執(zhí)行下面的程序框圖,輸出的S=240,則判斷框中為(  )
A.k≥15?B.k≤16?C.k≤15?D.k≥16?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f1(x)=x,f2(x)=x-$\frac{{x}^{3}}{6}$,f3(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$,f4(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$,f5(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$+$\frac{{x}^{9}}{362880}$,依次稱為f(x)=sinx在[0,π]上的第1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)、5項(xiàng)多項(xiàng)式逼近函數(shù).以此類推,請將f(x)=sinx的n項(xiàng)多項(xiàng)式逼近函數(shù)fn(x)在橫線上補(bǔ)充完整:fn(x)=$x-\frac{x^3}{3!}+\frac{x^5}{5!}-…+{(-1)^{n-1}}\frac{{{x^{2n-1}}}}{(2n-1)!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖的框圖,若輸出結(jié)果為2,則輸入的實(shí)數(shù)x的值是( 。
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{\sqrt{2}}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察以下式子:
$\begin{array}{l}cos\frac{2π}{3}=-\frac{1}{2};\\ cos\frac{2π}{5}+cos\frac{4π}{5}=-\frac{1}{2};\\ cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7}=-\frac{1}{2};\end{array}$
按此規(guī)律歸納猜想第5個的等式為$cos\frac{2π}{11}+cos\frac{4π}{11}+cos\frac{6π}{11}+cos\frac{8π}{11}+cos\frac{10π}{11}=-\frac{1}{2}$.(不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an}前四項(xiàng)中第二項(xiàng)為606,前四項(xiàng)和Sn為2600,則第4項(xiàng)為( 。
A.707B.782C.870D.990

查看答案和解析>>

同步練習(xí)冊答案