16.已知a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd≤8.

分析 a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化簡(jiǎn),利用三角函數(shù)的單調(diào)性即可證明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.

解答 證明:∵a2+b2=4,c2+d2=16,
令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.
∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α-β)≤8.當(dāng)且僅當(dāng)cos(α-β)=1時(shí)取等號(hào).
因此ac+bd≤8.
另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,當(dāng)且僅當(dāng)$\frac{a}{c}=\fracxz7bxl9$時(shí)取等號(hào).
∴-8≤ac+bd≤8.

點(diǎn)評(píng) 本題考查了對(duì)和差公式、三角函數(shù)的單調(diào)性、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|(x∈R),其中MN是半徑為4的圓O的一條弦,O為原點(diǎn),P為單位圓上的點(diǎn),設(shè)函數(shù)f(x)的最小值為t,當(dāng)點(diǎn)P在單位圓上運(yùn)動(dòng)時(shí),t的最大值為3,則線段MN的長(zhǎng)度為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,則“d>0”是“S4+S6>2S5”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.(1+i)(2+i)=( 。
A.1-iB.1+3iC.3+iD.3+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若2bcosB=acosC+ccosA,則B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U=R,集合A={x|x<-2或x>2},則∁UA=( 。
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={1,2,3,4},B={2,4,6,8},則A∩B中元素的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線l 的方向向量為$\overrightarrow{a}$,平面α的法向量為$\overrightarrow{n}$且l?α,則能使l∥α的是( 。
A.$\overrightarrow a=(1,-1,3),\overrightarrow n=(0,3,1)$B.$\overrightarrow a=(1,0,0),\overrightarrow n=(-2,0,0)$
C.$\overrightarrow a=(0,2,1),\overrightarrow n=(-1,0,-1)$D.$\overrightarrow a=(1,3,5),\overrightarrow n=(1,0,1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案