已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線所成角的余弦值;
(Ⅲ)探究在上是否存在點Q,使得,并說明理由.

(Ⅰ) (Ⅱ) (Ⅲ) 在上存在點Q,使得.

解析試題分析:(Ⅰ)由該幾何體的三視圖可知垂直于底面,且,

,,
此幾何體的體積為;  
解法一:(Ⅱ)過點,連接,則或其補角即為異面直線
所成角,在中,,
;即異面直線所成角的余弦值為
(Ⅲ)在上存在點Q,使得;取中點,過點于點,則點為所求點;
連接、,在中,
,
,
,
,,

為圓心,為直徑的圓與相切,切點為,連接、,可得
,,,
,;
解法二:(Ⅰ)同上。
(Ⅱ)以為原點,以、所在直線為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱柱中,底面,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是邊長為2的正方形,⊥平面,,// 且.

(Ⅰ)求證:平面⊥平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,ACBC,點DAB的中點,側(cè)面BB1C1C是正方形.

(1) 求證ACB1C;(2)求二面角B-CD-B1平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.

(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關(guān)系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在直三棱柱中,分 別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面(2)直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長為1的正方體中.

(1)求異面直線所成的角;
(2)求證平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,MBD的中點,NBC的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知直三棱柱中,,點M是的中點,Q是AB的中點,
(1)若P是上的一動點,求證:
(2)求二面角大小的余弦值.

查看答案和解析>>

同步練習(xí)冊答案