如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,ACBC,點DAB的中點,側面BB1C1C是正方形.

(1) 求證ACB1C;(2)求二面角B-CD-B1平面角的正切值.

(1)要證明線線垂直,要通過線面垂直的性質(zhì)定理來求解,主要是得到AC⊥平面BCC1B1。
(2)

解析試題分析:證明:(1)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC
CC1AC,
ACBC,BCCC1=C,
所以,AC⊥平面BCC1B1,
所以,ACB1C.                          3分
(2)∵△ABC是等腰直角三角形,DAB中點,
CDAB
∵平面ABC⊥平面AA1B1B,平面ABC∩平面AA1B1B=AB
CD ⊥平面AA1B1B,
B1D平面AA1B1B,BD平面AA1B1B
CDB1D,CDBD,
∴∠B1DB是二面角B-CD-B1平面角,         6分
不妨設正方形BB1C1C的棱長為2a,則:
RTB1DB中,BD=a,BB1=2a,∠B1BD=90º
∴tan∠B1DB==.
∴所求二面角B-CD-B1平面角的正切值為.          8分
考點:二面角,線線垂直
點評:考查了線線垂直和二面角的平面角的求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,底面,,,點、分別為棱、的中點.

(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求證:BD⊥AA1;
若四邊形是菱形,且,求四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.

(Ⅰ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,,,,,分別是的中點.

(1)求證: 底面;
(2)求證:平面平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

圓柱的高是8cm,表面積是130πcm2,求它的底面圓半徑和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線所成角的余弦值;
(Ⅲ)探究在上是否存在點Q,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積V;
(2)求該幾何體的側面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,側棱與底面垂直,,,點分別為的中點.
(1)證明:平面;
(2)求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

同步練習冊答案