與圓的位置關(guān)系是(    )
A.內(nèi)含 B.內(nèi)切 C.相交D.外切
A

由圓與圓得:
:圓心坐標(biāo)為(1,-2),半徑r=4;圓:圓心坐標(biāo)為(2,0),半徑R=1.
兩個(gè)圓心之間的距離
而R-r =4-1=3,0≤d<3,所以兩圓的位置關(guān)系是內(nèi)含.
故選A
此題考查了圓與圓的位置關(guān)系及其判定,以及兩點(diǎn)間的距離公式.圓與圓位置關(guān)系的判定方法為:0≤d<R-r,兩圓內(nèi) 含;d=R-r,兩圓內(nèi)切;R-r<d<R+r時(shí),兩圓相交;d=R+r時(shí),兩圓外切;d>R+r時(shí),兩圓相離(d為兩圓心間的距離,R和r分別為兩圓的 半徑).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)直線與拋物線交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。(13分)
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面α截一球面得圓M,過(guò)圓心M且與α成二面角的平面β截該球面得圓N.若該球面的半徑為4,圓M的面積為4,則圓N的面積為(   )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn).已知|AB|=2|OA|,且點(diǎn)B的縱坐標(biāo)大于零.
(1)求向量的坐標(biāo);
(2)求圓關(guān)于直線OB對(duì)稱的圓的方程;
(3)是否存在實(shí)數(shù)a,使函數(shù)的圖像上總有關(guān)于直線OB對(duì)稱的兩個(gè)點(diǎn)?若不存在,說(shuō)明理由:若存在,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線被圓所截得的弦長(zhǎng)為4,則是(   )
A.-1B.-2 C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線被圓截得的弦長(zhǎng)為,則實(shí)數(shù)的值為
A.B.C.D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于a∈R,直線(a-1)xya+1=0恒過(guò)定點(diǎn)C,則以C為圓心,以為半徑的圓的方程為(   )
A.x2y2-2x+4y=0   B.x2y2+2x+4y=0
C.x2y2+2x-4y=0D.x2y2-2x-4y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,已知圓心坐標(biāo)為的圓軸及直線分別相切于兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于兩點(diǎn).
(1)求圓和圓的方程;(2)過(guò)點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在坐標(biāo)平面上,圓C的圓心在原點(diǎn)且半徑為2,已知直線與圓C
相交,則直線與下列圓形一定相交的是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案