【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,,, ,是半圓上不同于,的點,四邊形是矩形.
(Ⅰ)若,證明:平面;
(Ⅱ)若,求三棱錐體積的最大值.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
(Ⅰ)先證明平面,從而可得,過點作,垂足為,可得到,由勾股定理可得,從而可證.
(Ⅱ)過點作,垂足為,可得,由,作于,由(Ⅰ)知平面,則是三棱錐的高,當最大,即點與點重合時,三棱錐的體積最大,從而可求出答案.
(Ⅰ)∵平面與半圓所在的平面垂直,
∴平面平面,
又平面平面,,
∴平面
∵平面,
∴,
∵是半圓上一點,
∴,
又,
∴平面,
∵平面,
∴
∵四邊形是矩形,
∴,
由,,,過點作,垂足為,
則,,
,,
∴,
∴
又,
∴平面
(Ⅱ)在平面內(nèi),作于,由(Ⅰ)知平面,
則是三棱錐的高,
∴當最大,即點與點重合時,三棱錐的體積最大,此時
∵,,過點作,垂足為,
則,,
∴,
∴三棱錐體積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了增強學(xué)生的記憶力和辨識力,組織了一場類似《最強大腦》的 PK 賽,兩隊各由 4 名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(a>b>0)經(jīng)過點,且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A(0,b),B(a,0),點P是橢圓C上位于第三象限的動點,直線AP、BP分別將x軸、y軸于點M、N,求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(3,5),傾斜角為.
(1)寫出直線l的參數(shù)方程和曲線C的標準方程.
(2)設(shè)直線l與曲線C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的,,三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下: , , , , , , , , , ,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】M是正方體的棱的中點,給出下列四個命題:①過M點有且只有一條直線與直線都相交;②過M點有且只有一條直線與直線都垂直;③過M點有且只有一個平面與直線都相交;④過M點有且只有一個平面與直線都平行;其中真命題是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ∥,且.
(1)若分別是中點,求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com