7.已知某三棱錐的三視圖如圖所示,圖中的3個直角三角形的直角邊長度已經(jīng)標(biāo)出,則在該三棱錐中,最短的棱和最長的棱所在直線的成角余弦值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 由三視圖還原原幾何體,補形找出異面直線所成角,求解三角形得答案.

解答 解:由三視圖還原原幾何體如圖:

幾何體是三棱錐A-BCD,滿足面ACD⊥面BCD,且AD⊥CD,BC⊥CD.
最短棱為CD,最長棱為AB.
在平面BCD內(nèi),過B作BE∥CD,且BE=CD,
∴四邊形BEDC為正方形,可得AE=2$\sqrt{2}$,
在Rt△AEB中,求得AB=$\sqrt{{1}^{2}+(2\sqrt{2})^{2}}=3$,
∴cos∠ABE=$\frac{BE}{AB}=\frac{1}{3}$.
即最短的棱和最長的棱所在直線的成角余弦值為$\frac{1}{3}$.
故選:A.

點評 本題考查空間幾何體的三視圖,考查異面直線所成角的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|x(4-x)<0},N={x|(x-1)(x-6)<0,x∈Z},則M∩N=( 。
A.(1,6)B.(4,6)C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-cx+bln(ax),其中c,b,a∈R,且a≠0.
(1)當(dāng)c=-3,b=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a=1,若f(x)存在極大值,且對于c的一切可能取值,f(x)的極大值均小于0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某四棱錐的三視圖,則該幾何體的體積為(  )
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻折過程中:
①|(zhì)BM|是定值;
②點M在某個球面上運動;
③存在某個位置,使DE⊥A1C;
④存在某個位置,使MB∥平面A1DE.
其中正確的命題是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$y=sinx-\sqrt{3}cosx$的圖象可由函數(shù)$y=\sqrt{3}sinx+cosx$的圖象至少向右平移$\frac{π}{2}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知k是正整數(shù),且1≤k≤2017,則滿足方程sin1°+sin2°+…+sink°=sin1°•sin2°…sink°的k有11個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸的一個頂點和兩個焦點構(gòu)成直角三角形,且三角形的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左、右焦點,過F1,F(xiàn)2任作兩條平行直線分別交橢圓于A,B和C,D不同四點,求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某設(shè)備的使用年數(shù)x與所支出的維修總費用y的統(tǒng)計數(shù)據(jù)如下表:
使用年數(shù)x(單位:米)23456
維修總費用y(單位:萬元)1.54.55.56.57.5
根據(jù)上表可得回歸直線方程為$\widehat{y}$=1.3x+$\widehat{a}$.若該設(shè)備維修總費用超過12萬元就報廢,據(jù)此模型預(yù)測該設(shè)備最多可使用10年.

查看答案和解析>>

同步練習(xí)冊答案