甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1-)元.
(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+)元;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
【答案】分析:(1)由題意可得生產(chǎn)a千克該產(chǎn)品所用的時間是小時,由于每一小時可獲得的利潤是100(5x+1-)元,即可得到生產(chǎn)a千克該產(chǎn)品所獲得的利潤;
(2)利用(1)的結(jié)論可得生產(chǎn)1千克所獲得的利潤為90000(5+),1≤x≤10.進(jìn)而得到生產(chǎn)900千克該產(chǎn)品獲得的利潤,利用二次函數(shù)的單調(diào)性即可得出.
解答:解:(1)生產(chǎn)a千克該產(chǎn)品所用的時間是小時,
∵每一小時可獲得的利潤是100(5x+1-)元,∴獲得的利潤為100(5x+1-)×元.
因此生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+)元.
(2)生產(chǎn)900千克該產(chǎn)品獲得的利潤為90000(5+),1≤x≤10.
設(shè)f(x)=,1≤x≤10.
則f(x)=,當(dāng)且僅當(dāng)x=6取得最大值.
故獲得最大利潤為=457500元.
因此甲廠應(yīng)以6千克/小時的速度生產(chǎn),可獲得最大利潤457500元.
點評:正確理解題意和熟練掌握二次函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1-
3
x
)元.
(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+
1
x
-
3
x2
)元;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1-
3x
)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100元.

(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a元;

(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷解析版) 題型:解答題

甲廠以x 千克/小時的速度運輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時可獲得利潤是元.

(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;

(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷解析版) 題型:解答題

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1﹣)元.

(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+)元;

(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

 

查看答案和解析>>

同步練習(xí)冊答案