由x,-x,|x|,x2,-3x3組成的集合中,元素的個(gè)數(shù)最多為幾個(gè)?

答案:
解析:

設(shè)由x,-x,|x|,,組成的集合記為M.∵=|x|,=-x,∴由集合元素的互異性,知集合M是由x,-x,|x|組成的.又∵|x|=知|x|必與x,-x中的一個(gè)相等,∴集合M是由x,-x組成的集合.當(dāng)x≠-x,即x≠0時(shí),集合M中元素的個(gè)數(shù)最多有兩個(gè),分別是x,-x.因此由x,-x,|x|,,組成的集合元素的個(gè)數(shù)最多為2.


提示:

討論這幾個(gè)數(shù)的大小關(guān)系,根據(jù)集合元素的互異性來(lái)確定.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在[1,8]上的函數(shù)f(x)=
4-8|x-
3
2
|    1≤x≤2
1
2
f(
x
2
)       2<x≤8
.則下列結(jié)論中,錯(cuò)誤的是( 。
A、f(3)=2
B、函數(shù)f(x)的值域?yàn)閇0,4]
C、對(duì)任意的x∈[1,8],不等式xf(x)≤6恒成立
D、將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱為函數(shù)f(x)的不動(dòng)點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱{an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
設(shè)函數(shù)g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函數(shù)g(x)的不動(dòng)點(diǎn)x1,x2;
(2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(duì)(1)中的兩個(gè)不動(dòng)點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證{
an-x1
an-x2
}
是等比數(shù)列,并求
lim
n→∞
an
;
(3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
注:已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+T=bn,則稱數(shù)列{bn} 為周期數(shù)列,T是它的一個(gè)周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于兩個(gè)定義域相同的函數(shù)f(x)、g(x),如果存在實(shí)數(shù)m、n使得h(x)=m•f(x)+n•g(x),則稱函數(shù)h(x)是由“基函數(shù)f(x)、g(x)”生成的.
(1)若f(x)=x2+x和g(x)=x+2生成一個(gè)偶函數(shù)h(x),求h(
2
)的值;
(2)若h(x)=2x2+3x-1由函數(shù)f(x)=x2+ax,g(x)=x+b(a,b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)如果給定實(shí)系數(shù)基函數(shù)f(x)=k1x+b1,g(x)=k2x+b2(k1k2≠0),問(wèn):任意一個(gè)一次函數(shù)h(x)是否都可以由它們生成?請(qǐng)給出你的結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)試畫出由方程
lg(6-x)+lg(x-2)+lo
g
 
1
10
(x-2)
lg2y
=
1
2
所確定的函數(shù)y=f(x)圖象.
(2)若函數(shù)y=ax+
1
2
與y=f(x)的圖象恰有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),分別探究下列小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否屬于集合A?并簡(jiǎn)要說(shuō)明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說(shuō)明你的結(jié)論.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案