分析:(1)當(dāng)a=1時(shí),可求得f(x)、f′(x),由f′(x)=0,得x=1,求出函數(shù)的極值、端點(diǎn)處函數(shù)值,然后進(jìn)行比較即可;
(2)利用導(dǎo)數(shù)求出f(x)的增區(qū)間,由題意可知[
,+∞)為增區(qū)間的子集,由此可得a的范圍;
(3)方程可變?yōu)?span id="o33qdqx" class="MathJye">
+lnx=m,則問題等價(jià)于函數(shù)
g(x)=+lnx的圖象與函數(shù)y=m的圖象在區(qū)間[
,e]內(nèi)恰有兩個(gè)交點(diǎn).利用導(dǎo)數(shù)研究函數(shù)g(x)的性質(zhì)、極值、端點(diǎn)處函數(shù)值,畫出草圖,借助圖象可得m的范圍;
解答:解:(1)當(dāng)a=1時(shí),f(x)=
+lnx-1,
f′(x)=-=,
令f′(x)=0,得x=1,
于是,當(dāng)
<x<1時(shí),f′(x)<0,當(dāng)1<x<2時(shí),f′(x)>0,
所以當(dāng)x=1時(shí)f(x)取得極小值,且f(1)=0,
又f(
)=1-ln2,f(2)=ln2-
,
所以當(dāng)x=1時(shí)函數(shù)f(x)取得最小值0.
(2)
f′(x)=-=,
因?yàn)閍為正實(shí)數(shù),由定義域知x>0,
所以函數(shù)的單調(diào)遞增區(qū)間為
[,+∞),
又函數(shù)f(x)在
[,+∞)上為增函數(shù),所以
0<≤,
所以a≥2;
(3)方程1-x+x2lnx-2mx=0在區(qū)間[
,e]內(nèi)恰有兩個(gè)相異的實(shí)數(shù)根,
推得方程
+lnx-m=0在區(qū)間[
,e]內(nèi)恰有兩個(gè)相異的實(shí)數(shù)根,即方程
+lnx=m在區(qū)間[
,e]內(nèi)恰有兩個(gè)相異的實(shí)數(shù)根,
則函數(shù)
g(x)=+lnx的圖象與函數(shù)y=m的圖象在區(qū)間[
,e]內(nèi)恰有兩個(gè)交點(diǎn).
考察函數(shù)
g(x)=+lnx,
g′(x)=-+=,則g(x)在區(qū)間
[,]為減函數(shù),在
[,e]為增函數(shù),
則有:
g(e)=+lne=+1=>0,
g()=+ln=-ln2<0,
g(
)=
+ln
=
-1=
<0<g(e),
畫函數(shù)
g(x)=+lnx,x∈[
,e]的草圖,要使函數(shù)
g(x)=+lnx的圖象與函數(shù)y=m的圖象在區(qū)間[
,e]內(nèi)恰有兩個(gè)交點(diǎn),
則要滿足
g()<m≤g(),
所以m的取值范圍為{m|
-ln2<m≤}.