(本大題滿分12分)
某公司預(yù)計(jì)全年分批購入每臺價值為2000元的電視機(jī)共3600臺,每批都購入x臺,且每批均需付運(yùn)費(fèi)400元,儲存購入的電視機(jī)全年所付保管費(fèi)與每批購入電視機(jī)的總價值(不含運(yùn)費(fèi))成正比。若每批購入400臺,則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說明理由
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
函數(shù)是R上的偶函數(shù),且當(dāng)時,函數(shù)的解析式為
(1)求的值;
(2)求當(dāng)時,函數(shù)的解析式;
(3)用定義證明在上是減函數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知函數(shù)(∈R且),.
(Ⅰ)若,且函數(shù)的值域?yàn)閇0, +),求的解析式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)x∈[-2 , 2 ]時,是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè),, 且是偶函數(shù),判斷能否大于零?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分16分)
記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
(I)試用含a的式子表示b,并求函數(shù)的單調(diào)區(qū)間;
(II)已知為函數(shù)圖象上不同兩點(diǎn),為AB的中點(diǎn),記A、B兩點(diǎn)連線的斜率為k,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè),函數(shù).
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)在上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com