6.設(shè)集合A={5,a+1},集合B={a,b}.若A∩B={2},則a=1,A∪B={1,2,5}.

分析 根據(jù)交集的定義,A∩B={2},則2∈A,2∈B.即可求出a,b的值,根據(jù)并集的定義求解A∪B即可.

解答 解:集合A={5,a+1},集合B={a,b}.
∵A∩B={2},
∴a+1=2
解得:a=1.
集合A={5,2}
∵2∈B
∴b=2.
∴集合B={1,2}
故得A∪B={1,2,5}.
故答案為1,{1,2,5}.

點(diǎn)評(píng) 本題考查了交集,并集及其運(yùn)算,熟練掌握交集,并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2$\sqrt{3}$sinωxcosωx-2sin2ωx+2(ω>0)圖象的一個(gè)對(duì)稱(chēng)中心為P(-$\frac{π}{12}$,1).
(1)求ω的最小值;
(2)當(dāng)ω取最小值時(shí),試用“五點(diǎn)法”作出y=f(x)的圖象.
(3)當(dāng)ω取最小值時(shí),求函數(shù)y=f(x)的單調(diào)遞增區(qū)間及對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知p:x<-2或x>10;q:1-m<x<1+m2;¬p是q的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)-log42x+$\frac{1}{2}$x-m=0有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解不等式:(1-a)x2-2x+1<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等比數(shù)列{an}的通項(xiàng)公式為an=3n-1,設(shè)數(shù)列{bn}滿(mǎn)足對(duì)任意自然數(shù)n都有$\frac{b_1}{a_1}$+$\frac{b_2}{a_2}$+$\frac{b_3}{a_3}$+┅+$\frac{b_n}{a_n}$=n2恒成立
①求數(shù)列{bn}的通項(xiàng)公式;
②求b1+b2+b3+┅+b2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若雙曲線m2x2-y2+m2=0(m≠0)的一條漸近線經(jīng)過(guò)點(diǎn)($\sqrt{2}$,2),則該雙曲線的離心率為(  )
A.$\sqrt{2}$B.3C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解下列不等式:
(1)3x2-x-4>0;
(3)x2+3x-4>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=x•ex
(1)求f(x)的極值;
(2)k×f(x)≥$\frac{1}{2}$x2+x在[-1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案