【題目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的值域.
【答案】
(1)解:f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的周期T= =π,∴ω=2,
∵f =cos =cos =﹣sinφ= ,﹣ <φ<0,∴φ=﹣
(2)解:由(1)可得f(x)=cos(2x﹣ ),令2kπ﹣π≤2x﹣ ≤2kπ,
求得kπ﹣ ≤x≤kπ+ ,可得函數(shù)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z
(3)解:在[0, ]上,2x﹣ ∈[﹣ , ],cos(2x﹣ )∈[﹣ ,1],
即函數(shù)的值域?yàn)閇﹣ ,1]
【解析】(1)由周期求出ω,由特殊點(diǎn)求出φ的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調(diào)性,求得f(x)的增區(qū)間.(3)由條件利用正弦函數(shù)的定義域和值域,求得f(x)在[0, ]上的值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:sin230°+sin290°+sin2150°= ,sin25°+sin265°+sin2125°= .通過(guò)觀察上述兩等式的規(guī)律,請(qǐng)你寫(xiě)出一般性的命題,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F為橢圓C: + =1的右焦點(diǎn),橢圓C上任意一點(diǎn)P到點(diǎn)F的距離與點(diǎn)P到直線l:x=m的距離之比為 ,求:
(1)直線l方程;
(2)設(shè)A為橢圓C的左頂點(diǎn),過(guò)點(diǎn)F的直線交橢圓C于D、E兩點(diǎn),直線AD、AE與直線l分別相交于M、N兩點(diǎn).以MN為直徑的是圓是否恒過(guò)一定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)設(shè),對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),探究函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為
(I)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為求直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形中, ,將沿折起,得到如圖所示的四棱錐,其中.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com