【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x)的定義域?yàn)? . (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時(shí)對(duì)應(yīng)的x的值.
【答案】解:(Ⅰ)∵t=log2x, ≤x≤4, ∴l(xiāng)og2 ≤t≤log24,
∴﹣2≤t≤2,即t的取值范圍是[﹣2,2]
(Ⅱ)f(x)=log2(4x)log2(2x)=(log24+log2x)(log22+log2x)
=(2+log2x)(1+log2x)=(2+t)(1+t)
=t2+3t+2=(t+ )2﹣ ,
∵﹣2≤t≤2,
當(dāng)x=4時(shí),最大值為12; 時(shí),最小值-
【解析】(Ⅰ)利用對(duì)數(shù)函數(shù)的單調(diào)性,若t=log2x,求t的取值范圍;(Ⅱ)利用對(duì)數(shù)的運(yùn)算法則,結(jié)合配方法,即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2+bx+c對(duì)于任意實(shí)數(shù)t都有f(2+t)=f(2﹣t),則f(1),f(2),f(4)的大小關(guān)系為( )
A.f(1)<f(2)<f(4)
B.f(2)<f(1)<f(4)
C.f(4)<f(2)<f(1)
D.f(4)<f(1)<f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.
現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1 260 m,經(jīng)測(cè)量,cos A=,cos C=.
(1)求索道AB的長(zhǎng);
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回歸直線方程;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)銷售收入成本)(附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,),,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個(gè)面包,以(單位:個(gè), )表示面包的需求量, (單位:元)表示利潤(rùn).
(Ⅰ)求關(guān)于的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率;
(III)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn), 為的中點(diǎn),且直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)另一直線與橢圓交于兩點(diǎn),原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體如圖所示.其中為矩形, 為等腰直角三角形, ,四邊形為梯形,且, , .
(1)若為線段的中點(diǎn),求證: 平面.
(2)線段上是否存在一點(diǎn),使得直線與平面所成角的余弦值等于?若存在,請(qǐng)指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)=|t(x+ )﹣5|,其中常數(shù)t>0.
(1)若函數(shù)f(x)分別在區(qū)間(0,2),(2,+∞)上單調(diào),試求實(shí)數(shù)t的取值范圍;
(2)當(dāng)t=1時(shí),方程f(x)=m有四個(gè)不相等的實(shí)根x1 , x2 , x3 , x4 . ①求四根之積x1x2x3x4的值;
②在[1,4]上是否存在實(shí)數(shù)a,b(a<b),使得f(x)在[a,b]上單調(diào)且取值范圍為[ma,mb]?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com