【題目】在平面直角坐標系中,過橢圓右焦點的直線交橢圓于兩點, 為的中點,且直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設另一直線與橢圓交于兩點,原點到直線的距離為,求面積的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(Ⅰ)由題意,焦點,所以,再由,得,
進而得,即可得到橢圓的標準方程.
(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得;
②設直線的方程為: ,由題意,原點到直線的距離得到.
設交點的坐標分別為,聯立方程組,得到,再由弦長公式,利用均值不等式,即可求解最值,進而得到面積的最值.
試題解析:
(Ⅰ)由題意,直線與軸交于焦點: , ,設, , ,則: ,
, ,
,又, ,
即橢圓的方程為:
(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得;
②當直線的斜率存在時且不為0時,設直線的方程為: ,由題意,原點到直線的距離為,故,
.設交點的坐標分別為: , ,
則: , ,
由題意, .
,
當且僅當,即時等號成立, ;
綜上所述,當直線的斜率時,
即時, 面積的最大值
科目:高中數學 來源: 題型:
【題目】已知數列的通項公式是.
(1)判斷是否是數列中的項;
(2)試判斷數列中的各項是否都在區(qū)間內;
(3)試判斷在區(qū)間內是否有無窮數列中的項?若有,是第幾項?若沒有,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數方程為(為參數),圓的極坐標方程為.
(1)求直線的普通方程與圓的直角坐標方程;
(2)設圓與直線交于兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=log2(4x)log2(2x)的定義域為 . (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 ≤a≤1,若函數f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數表達式;
(2)判斷函數g(a)在區(qū)間[ ,1]上的單調性,并求出g(a)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2014高考課標2理數18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,
E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡(單位:歲) | ||||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡”45歲為分界點,由以上統(tǒng)計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在和的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在的概率.
參考數據如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com