分析 (I)Sn=n2+n.n=1時(shí),a1=S1;n≥2時(shí),an=Sn-Sn-1.即可得出.
(II)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}$$(\frac{1}{n}-\frac{1}{n+1})$.利用“裂項(xiàng)求和”方法即可得出.
解答 解:(I)∵Sn=n2+n.n=1時(shí),a1=S1=2;
n≥2時(shí),an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,n=1時(shí)也成立.
∴an=2n(n∈N*).
(II)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}$$(\frac{1}{n}-\frac{1}{n+1})$.
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$
=$\frac{n}{4(n+1)}$.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和方法”、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 真,假,真 | B. | 假,假,真 | C. | 真,真,假 | D. | 假,假,假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | … |
f(x) | 5 | 1 | 3 | 2 | 6 | 4 | … |
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com