已知數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N*,且{an}中任意兩項之和也是該數(shù)列中的一項.
(1)若a1=4,則d的取值集合為______;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為______.
由題意可得,ap+aq=ak,其中p、q、k∈N*,
由等差數(shù)列的通向公式可得a1+(p-1)d+a1+(q-1)d=a1+(k-1),
整理得d=
a1
k-p-q+1
,
(1)若a1=4,則d=
4
k-p-q+1

∵p、q、k∈N*,公差d∈N*,
∴k-p-q+1∈N*
∴d=1,2,4,
故d的取值集合為 {1,2,4};
(2)若a1=2m(m∈N*),則d=
2m
k-p-q+1
,
∵p、q、k∈N*,公差d∈N*
∴k-p-q+1∈N*,
∴d=1,2,4,…,2m,
∴d的所有可能取值的和為1+2+4+…+2m=
1×(1-2m+1)
1-2
=2m+1-1,
故答案為(1){1,2,4},(2)2m+1-1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調和數(shù)列.已知數(shù)列{an}是調和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調和數(shù)列.已知數(shù)列{an}是調和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足數(shù)學公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調和數(shù)列.已知數(shù)列{an}是調和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調和數(shù)列.已知數(shù)列{an}是調和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習冊答案