如圖,點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF。

(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值。
解:(1)由已知可得點(diǎn)A(-6,0),F(xiàn)(4,0)
設(shè)點(diǎn)P的坐標(biāo)是

由已知得

解得
于是
∴P點(diǎn)的坐標(biāo)是。
(2)直線AP的方程是
設(shè)點(diǎn)M的坐標(biāo)是(m,0),則M到直線AP的距離是
于是

解得
橢圓上的點(diǎn)到點(diǎn)M的距離d有

由于
∴當(dāng)時,d取得最小值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左右端點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),直線PF的方程為:
3
x+y-4
3
=0
且PA⊥PF.
(1)求直線AP的方程;
(2)設(shè)點(diǎn)M是橢圓長軸AB上一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),其中A(-6,0),F(xiàn)(4,0),點(diǎn)P在橢圓上且位于x軸上方,
PA
PF
=0

(Ⅰ)求橢圓的方程和離心率;
(Ⅱ)求點(diǎn)P的坐標(biāo);
(Ⅲ)若過點(diǎn)F且傾斜角為45°的直線l交橢圓于D,E兩點(diǎn),求△ADE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線PA的方程;
(Ⅱ)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西大學(xué)附中高三上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題

如圖,點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,

(1)求點(diǎn)P的坐標(biāo);

(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧德三縣市2010高三第二次聯(lián)考文科數(shù)學(xué)試題 題型:解答題

(本小題滿分12分)如圖,點(diǎn)A,B分別是橢圓的長軸的左右端點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),直線PF的方程為:

⑴求直線AP的方程;

⑵設(shè)點(diǎn)M是橢圓長軸AB上一點(diǎn),點(diǎn)M到直線AP的距離等于,求橢圓上的點(diǎn)到

點(diǎn)M的距離d的最小值

 

查看答案和解析>>

同步練習(xí)冊答案