7.函數(shù)f(x)=x3+ax2+3x-1在x=-3時取得極值,則a=( 。
A.2B.3C.4D.5

分析 因?yàn)閒(x)在x=-1時取極值,則求出f′(x)得到f′(-3)=0,解出求出a即可.

解答 解:∵f′(x)=3x2+2ax+3,f(x)在x=-3時取得極值,
∴f′(-3)=30-6a=0
∴a=5.
經(jīng)驗(yàn)證a=5時,函數(shù)f(x)=x3+5x2+3x-1在x=-3時取得極值,滿足題意.
故選:D.

點(diǎn)評 本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

,則( )

A. B.

C.4 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,則f(x)的最大值為(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x|x+a|+b是奇函數(shù)的充要條件是( 。
A.ab=0B.a+b=0C.a2+b2=0D.a=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x+1)lnx-a(x-1),a∈R
(1)若a=0時,求f(x)在x=1處的切線
(2)若函數(shù)f(x)>0 對?x∈(1,+∞)恒成立.求a的取值范圍
(3)從編號為1到2015的2015個小球中,有放回地連續(xù)取16次小球 (每次取一球),記所取得的小球的號碼互不相同的概率為p,求證:$\frac{1}{p}$>e${\;}^{\frac{120}{2011}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,側(cè)面PAD是正三角形且垂直于底面ABCD,E是PC的中點(diǎn).
(1)求證:BE⊥平面PCD;
(2)求二面角B-PC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=lnx-\frac{1}{2}x$.
(Ⅰ)求f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)x>1時,$f(x)+\frac{a}{x}<0$恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:當(dāng)n∈N*且n≥2時,$\frac{1}{2ln2}+\frac{1}{3ln3}+…+\frac{1}{nlnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=2-x2,g(x)=x.若f(x)*g(x)=min{f(x),g(x)},那么,f(x)*g(x)的最大值是(  )(注:min表示最小值)
A.2B.1C.0D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案