分析 t∈[$\frac{1}{2}$,2]時(shí),g(t)的最大值為1,若對(duì)任意的s,t∈[$\frac{1}{2}$,2],都有f(s)≥g(t)成立,則在[$\frac{1}{2}$,2]上$\frac{a}{x}$+xlnx≥1恒成立,構(gòu)造函數(shù)h(x)=-x2lnx+x,求其最大值,可得答案.
解答 解∵在[$\frac{1}{2}$,2]上g′(x)=-12x2+3≤0恒成立,
∴當(dāng)x=$\frac{1}{2}$時(shí),g(x)=-4x3+3x取最大值1,
∵對(duì)任意的s,t∈[$\frac{1}{2}$,2],都有f(s)≥g(t)成立,
∴在[$\frac{1}{2}$,2]上$\frac{a}{x}$+xlnx≥1恒成立,
即在[$\frac{1}{2}$,2]上a≥-x2lnx+x恒成立,
令h(x)=-x2lnx+x,則h′(x)=-x(2lnx+1)+1,h′′(x)=-2lnx-3,
∵在[$\frac{1}{2}$,2]上h′′(x)<0恒成立,∴h′(x)在[$\frac{1}{2}$,2]上為減函數(shù),
∵當(dāng)x=1時(shí),h′(x)=0,故當(dāng)x=1時(shí),h(x)取最大值1,
故a≥1,
故答案為:a≥1
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 21 | B. | 9 | C. | 5 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | a>b>c | C. | a<b<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在區(qū)間(-∞,3]上遞增 | B. | 在區(qū)間(-∞,-1]上遞增 | ||
C. | 在區(qū)間(-∞,3]上遞減 | D. | 在區(qū)間(-∞,-1]上遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=1nx | B. | y=x3 | C. | y=2|x | | D. | y=-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com