分析 設(shè)橢圓C的右焦點(diǎn)為F′(1,0),由已知條件推導(dǎo)出|PQ|+|PF|=|PQ|+2$\sqrt{2}$-|PF′|,利用Q,F(xiàn)′,P共線
,可得|PQ|+|PF|取最大值.
解答 解:∵點(diǎn)F為橢圓C:$\frac{{x}^{2}}{2}$+y2=1的左焦點(diǎn),∴F(-1,0),
∵點(diǎn)P為橢圓C上任意一點(diǎn),點(diǎn)Q的坐標(biāo)為(4,3),
設(shè)橢圓C的右焦點(diǎn)為F′(1,0),
∴|PQ|+|PF|=|PQ|+2$\sqrt{2}$-|PF′|
=2$\sqrt{2}$+|PQ|-|PF′|,
∵|PQ|-|PF′|≤|QF′|=3$\sqrt{2}$,
∴|PQ|+|PF|≤5$\sqrt{2}$,即最大值為5$\sqrt{2}$,此時(shí)Q,F(xiàn)′,P共線
故答案為:5$\sqrt{2}$.
點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查學(xué)生轉(zhuǎn)化問(wèn)題的能力,正確轉(zhuǎn)化是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,-1) | C. | (-∞,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | 2+$\sqrt{2}$ | C. | 1+2$\sqrt{2}$ | D. | 2+2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com