如圖,在四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,E是SD的中點(diǎn),
(1)證明:SB∥平面ACE;
(2)求二面角A-SB-C的余弦值;
(3)設(shè)點(diǎn)F在側(cè)棱SC上,∠ABF=60°,求

【答案】分析:(1)由已知中SD⊥底面ABCD,底面ABCD為矩形,易得DA,DC,DS兩兩垂直,以D為原點(diǎn),直線DA,DC,DS分別為x,y,z軸,建立空間直角坐標(biāo)系.求出向量,的坐標(biāo),易得平行,進(jìn)而由線面垂直的判定定理得到SB∥平面ACE;
(2)求出平面CBS的一個(gè)法向量和平面ABS的一個(gè)法向量,代入向量夾角公式,易求出二面角A-SB-C的余弦值;
(3)設(shè)(λ>0),由已知中∠ABF=60°,我們可根據(jù)向量夾角公式,構(gòu)造一個(gè)關(guān)于λ的方程,解方程求出λ的值,即可得到
解答:解:∵SD⊥底面ABCD,底面ABCD為矩形,
∴DA,DC,DS兩兩垂直,
如圖以D為原點(diǎn),直線DA,DC,DS分別為x,y,z軸,建立空間直角坐標(biāo)系.
則D(0,0,0),B(,2,0),S(0,0,2),C(0,2,0),
又∵E是SD的中點(diǎn),
∴E(0,0,1)
證明:(1)連接BD,與AC相交于點(diǎn)O,連接EO
所以O(shè)(,1,0)
=(,1,-1),=(,2,-2),
=2
∴SB∥EO
∵EO?平面ACE,SB?平面ACE,
∴SB∥平面ACE;
解:(2)設(shè)=(a,b,c)是平面CBS的一個(gè)法向量,則=0,=0
=(-,0,0),=(0,2,-2)
,令b=1,則=(0,1,1)
同理可得=(,0,-2)是平面ABS的一個(gè)法向量,
則鈍二面角A-SB-C的夾角θ,則
|cosθ|==
∴二面角A-SB-C的余弦值是-
證明:(3)設(shè)(λ>0)
則F(0,,),=(,),
又∵=(0,-2,0),=∠ABF=60°,
=•cos60°
=
解得λ=1
=1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是用空間向量求平面間的夾角,平面向量數(shù)量積的運(yùn)算,向量語(yǔ)言表述線面的垂直、平行關(guān)系,其中(1)的關(guān)鍵是證得向量平行,(2)中易忽略二面角A-SB-C為鈍二面角,而錯(cuò)解為,(3)的關(guān)鍵是根據(jù)向量夾角公式,構(gòu)造一個(gè)關(guān)于λ的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E為BS的中點(diǎn),CE=
2
,AS=
3
,求:
(Ⅰ)點(diǎn)A到平面BCS的距離;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點(diǎn)
(1)求證:EF∥平面SAD
(2)設(shè)SD=2CD,求二面角A-EF-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E為SD的中點(diǎn).
(1)若F為底面BC邊上的一點(diǎn),且BF=
1
6
BC
,求證:EF∥平面SAB;
(2)底面BC邊上是否存在一點(diǎn)G,使得二面角S-DG-A的正切值為
2
?若存在,求出G點(diǎn)位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點(diǎn).
(1)證明EF∥平面SAD;
(2)設(shè)SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.底面ABCD為矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求證:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案