【題目】如圖,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連結(jié)DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(Ⅰ)求證:AB為圓的直徑;
(Ⅱ)若AC=BD,求證:AB=ED.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)由切割線定理得∠PDA=∠DBA,由PG=PD,得∠PGD=∠EGA,所以∠DBA=∠EGA,即B,D,F,G四點共圓,從而∠BDA=∠PFA.而AF⊥EP,所以∠PFA=90°, ∠BDA=90°(2)由AC=BD,可得DC∥AB,所以DC⊥EP,即ED為直徑.因此AB=ED.
試題解析:證明 (1)因為PD=PG,所以∠PDG=∠PGD.由于PD為切線,故∠PDA=∠DBA,
又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,從而∠BDA=∠PFA.
由于AF⊥EP,所以∠PFA=90°,于是∠BDA=90°.故AB是直徑.
(2)連結(jié)BC,DC.
由于AB是直徑,故∠BDA=∠ACB=90°.在Rt△BDA與Rt△ACB中,AB=BA,AC=BD,
從而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因為∠DCB=∠DAB,
所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,
所以DC⊥EP,∠DCE為直角.于是ED為直徑.由(1)得ED=AB.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是[1,+∞),命題q:函數(shù)y=的值域為(0,1),下列命題是真命題的為( 。
A.p∧q
B.p∨q
C.p∧(¬q)
D.¬q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),.
(Ⅰ)當(dāng)時,求曲線在處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:=1(a>b>0)的焦距為2 , 且該橢圓經(jīng)過點(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過點P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點,當(dāng)直線MN與y軸垂直時,求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(4+)n展開式中的倒數(shù)第三項的二項式系數(shù)為45.
(1)求n;
(2)求含有x3的項;
(3)求二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項的和記為Sn . 如果a4=﹣12,a8=﹣4.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f( ﹣ )= ,f( ﹣ )= ,且α、β∈(﹣ ),求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中, ).
(1)若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,求函數(shù)在上的最大值和最小值;
(3)當(dāng)時,求證:對于任意大于1的正整數(shù),都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com