若非零函數(shù)f(x)對任意實數(shù)a,b均有f(a+b)=f(a)•f(b),且當x<0時,f(x)>1.
(1)求證:f(x)>0;
(2)求證:f(x)為減函數(shù);
(3)當f(4)=
1
16
時,解不等式f(x-3)•f(5)≤
1
4
考點:抽象函數(shù)及其應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)f(x)=f(
x
2
+
x
2
)=f2
x
2
),結(jié)合函數(shù)f(x)為非零函數(shù)可得;
(2)利用函數(shù)的單調(diào)性的定義證明;
(3)由f(4)=
1
16
可得f(2)=
1
4
,從而化簡不等式f(x-3)•f(5)≤
1
4
為f(x-3+5)≤f(2),從而利用單調(diào)性求解.
解答: 解:(1)證明:f(x)=f(
x
2
+
x
2
)=f2
x
2
)>0,
(2)證明:∵f(0)=f2(0),∴f(0)=1;
∴f(b-b)=f(b)•f(-b)=1;
∴f(-b)=
1
f(b)

任取x1<x2,則x1-x2<0,
f(x1)
f(x2)
=f(x1-x2)>1,
又∵f(x)>0恒成立,
∴f(x1)>f(x2);
則f(x)為減函數(shù);
(3)由f(4)=f2(2)=
1
16
,則f(2)=
1
4
,
原不等式轉(zhuǎn)化為f(x-3+5)≤f(2),
結(jié)合(2)得:x+2≥2,
∴x≥0;
故不等式的解集為{x|x≥0}.
點評:本題考查了函數(shù)單調(diào)性的證明與應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:“a+2b=0”是“直線ax+2y+3=0和直線x+by+2=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當φ1(x)=x3,φ2(x)=sin x時,φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設(shè)函數(shù)f(x)的定義域為D,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”;
②函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B;
④若函數(shù)f(x)=aln(x+2)+
x
x2+1
(x>-2,a∈R)有最大值,則f(x)∈B;
⑤若函數(shù)f(x)=ln(x2+a)∈A,則a>0.
其中的真命題有( 。
A、①③④⑤B、②③④⑤
C、①③⑤D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

擬定從甲地到乙地通話m分鐘的話費符合f(m)=
A3.71 , 0<m≤4
1.06×(0.5×[m]+2) , m>4
,其中[m]表示不超過m的最大整數(shù),從甲地到乙地通話5.2分鐘的話費是(  )
A、4.77B、4.24
C、3.71D、7.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x2+a(a∈R)
①若f(x)的圖象在(1,f(1))處的切線經(jīng)過點(0,2),則a=
 
;
②若對任意x1∈[0,2],都存在x2∈[2,3]使得f(x1)+f(x2)≤2,則實數(shù)a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項式(3x2+
1
x
n的展開式中各項系數(shù)的和是64,則展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的主視圖和左視圖都是邊長為2的等邊三角形,俯視圖如圖所示,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前三項為1,2,4,則a6=( 。
A、8B、32C、16D、64

查看答案和解析>>

同步練習(xí)冊答案