(本題滿分12分)若定義在上的函數(shù)同時滿足下列三個條件:
①對任意實數(shù)均有成立;
②; ③當(dāng)時,都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
(1)=0, ;(2)證明:見解析;(3).
【解析】本試題主要是考查了函數(shù)的單調(diào)性的證明,以及函數(shù)與不等式的求解,賦值法求解函數(shù)的值。
(1)令得=0,令,得
(2)則,則;利用已知關(guān)系式得到證明
(3)在第二問的基礎(chǔ)上可知得到,轉(zhuǎn)換不等式得到
,進(jìn)而求解得到結(jié)論。
解:(1)令得=0,令,得
(2)證明:設(shè)則,則;,故,為R上的增函數(shù)
(3)由已知得原不等式轉(zhuǎn)化為,結(jié)合為R上的增函數(shù)得:
,解得 .故原不等式的解集為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題
.(本題滿分12分)若圓C過點M(0,1)且與直線相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點
(I)求曲線E的方程; (II)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線上,求證:t與均為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:遼寧省本溪市2010年高一下學(xué)期期末數(shù)學(xué)試題 題型:解答題
(本題滿分12分)
若有最大值9和最小值3,求實數(shù) 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年甘肅省天水市高一期中考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)若集合A={x|x2-3x+2=0}, B={x|x2-mx+1=0}, A∩B=B,求實數(shù)m的取值范圍.(12分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com