已知雙曲線C:
x2
a2
-
y2
b2
=1的右焦點(diǎn)為F,過F作雙曲線C的一條漸近線的垂線,垂足為H,交雙曲線C于點(diǎn)M,|FM|=|HM|,則雙曲線C的離心率為( 。
A、2
B、
3
C、
6
2
D、
2
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)一漸近線方程為 y=
b
a
x,則F2H的方程為 y-0=k(x-c),代入漸近線方程求得H的坐標(biāo),有中點(diǎn)公式求得中點(diǎn)M的坐標(biāo),再把點(diǎn)M的坐標(biāo)代入雙曲線求得離心率.
解答: 解:由題意可知,一漸近線方程為 y=
b
a
x,則F2H的方程為 y-0=k(x-c),
代入漸近線方程 y=
b
a
x 可得
H的坐標(biāo)為 (
a2
c
,
ab
c
),
故F2H的中點(diǎn)M (
c+
a2
c
2
ab
2c
),
∵|FM|=|HM|,
∴點(diǎn)M在雙曲線C上,
(
c+
a2
c
2
)
2
a2
-
(
ab
2c
)
2
b2
=1,
c2
a2
=e2
=2,
故e=
2
,
故選:D
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足下列關(guān)系式:①f(
π
2
)=1,②對(duì)于任意的x,y∈R,恒有:2f(x)f(y)=f(
π
2
-x+y)-f(
π
2
-x-y).
(1)求證:f(0)=0;
(2)求證:f(x)為奇函數(shù);
(3)f(x)是以2π為周期的周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正六棱臺(tái)的底面邊長分別為1厘米和2厘米,高是1厘米,則它的側(cè)面積是
 
厘米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有3個(gè)紅球和3個(gè)白球,現(xiàn)從袋中取出1球,然后放回袋中再取出一球,則取出的兩個(gè)球是同色球的概率是( 。
A、
1
2
B、
1
3
C、
1
6
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,0),若函數(shù)f(x)的圖象上存在兩點(diǎn)B、C到點(diǎn)A的距離相等,則稱該函數(shù)f(x)為“點(diǎn)距函數(shù)”,給定下列三個(gè)函數(shù):①y=-x+2(-1≤x≤2);②y=
9-(x+1)2
;③y=x+4(x≤-
5
2
).其中,“點(diǎn)距函數(shù)”的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件:
x-y≥0
x+2y≤4
x-2y≤1
,則Z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x+1|=2x根的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)任意的x,y∈R,都有f(x)+f(y)=2f(
x+y
2
)•f(
x-y
2
),f(0)≠0,則f(x)為( 。
A、是奇函數(shù)
B、是偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、無法確定f(x)奇偶性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1:x2+y2=1與圓O2:x2+y2-6x+8y+9=0,則兩圓的位置關(guān)系為( 。
A、相交B、內(nèi)切C、外切D、相離

查看答案和解析>>

同步練習(xí)冊(cè)答案