已知函數(shù),
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
(I);(II).
【解析】
試題分析:(I)先把帶入函數(shù)解析式,再對(duì)函數(shù)求導(dǎo),然后求在已知點(diǎn)的切線的斜率和已知點(diǎn)的坐標(biāo),再由點(diǎn)斜式求切線方程;(II)法1:先求函數(shù)的導(dǎo)函數(shù),得導(dǎo)函數(shù)為0時(shí)的根值,討論根值在區(qū)間的內(nèi)外情況,判斷原函數(shù)在區(qū)間的單調(diào)性,從而讓原函數(shù)在區(qū)間上的最小值小于0,解得的取值范圍.法2:把利用分離變量法分離,構(gòu)造新的函數(shù),利用導(dǎo)數(shù)求新函數(shù)在區(qū)間上的最小值,讓小于最小值就是的取值范圍.
試題解析:(I)當(dāng)時(shí),,, 2分
曲線在點(diǎn) 處的切線斜率,
所以曲線在點(diǎn)處的切線方程為. 6分
(II)解1: 7分
當(dāng),即時(shí),,在上為增函數(shù),
故,所以, ,這與矛盾 9分
當(dāng),即時(shí),
若,;若,,
所以時(shí),取最小值,因此有,即,
解得,這與矛盾; 12分
當(dāng)即時(shí),,在上為減函數(shù),所以
,所以,解得,這符合.
綜上所述,的取值范圍為. 15分
解2:有已知得:, 8分
設(shè),, 10分
,,所以在上是減函數(shù). 12分
,故的取值范圍為 15分
考點(diǎn):1、利用導(dǎo)函數(shù)求切線方程;2、導(dǎo)函數(shù)的性質(zhì);3、分離變量法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)。
(I)當(dāng)a=1時(shí),求在區(qū)間[1,e]的最大值和最小值;
(II)若在區(qū)間上,函數(shù)的圖象總在直線的下方,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2003-2004學(xué)年北京市豐臺(tái)區(qū)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市西城區(qū)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市學(xué)軍中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2006年重慶市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com