【題目】函數(shù)f(x)= ,(x∈(﹣∞,0]∪[2,+∞))的值域?yàn)椋?/span>
A.[0,4]
B.[0,2)∪(2,4]
C.(﹣∞,0]∪[4,+∞)
D.(﹣∞,2)∪(2,+∞)

【答案】B
【解析】解:f(x)= = =2+ ,
∵函數(shù)f(x)在(﹣∞,0]和[2,+∞)都單調(diào)遞減,
∴在(﹣∞,0]上有,0≤f(x)<2,
在[2,+∞)上有,2<f(x)≤4,
∴函數(shù)在(﹣∞,0]∪[2,+∞)上的值域?yàn)閇0,2)∪(2,4],
故選B.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)袋子,其中甲袋中裝有編號(hào)分別為1、2、3、4的4個(gè)完全相同的球,乙袋中裝有編號(hào)分別為2、4、6的3個(gè)完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個(gè)球,求兩球編號(hào)之和小于8的概率;
(Ⅱ)從甲袋中取2個(gè)球,從乙袋中取一個(gè)球,求所取出的3個(gè)球中含有編號(hào)為2的球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為 , xf(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

102

101

99

98

103

98

99

110

115

90

85

75

115

110

(1)這種抽樣方法是哪一種?
(2)將兩組數(shù)據(jù)用莖葉圖表示.
(3)將兩組數(shù)據(jù)進(jìn)行比較,說明哪個(gè)車間產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的奇函數(shù)f(x)滿足當(dāng)x>0時(shí),f(x)=|2x﹣2|,

(1)求函數(shù)f(x)的解析式;
(2)在圖中的坐標(biāo)系中作出函數(shù)y=f(x)的圖象,并找出函數(shù)的單調(diào)區(qū)間;
(3)若集合{x|f(x)=a}恰有兩個(gè)元素,結(jié)合函數(shù)f(x)的圖象求實(shí)數(shù)a應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上, , ,

(1)證明: ;

(2) 求平面所成的銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個(gè)三角形框架在圖中上下或左右移動(dòng),使每次恰有九個(gè)數(shù)在此三角形內(nèi),則這九個(gè)數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

同步練習(xí)冊(cè)答案