某班同學(xué)利用寒假在5個(gè)居民小區(qū)內(nèi)選擇兩個(gè)小區(qū)逐戶(hù)進(jìn)行一次“低碳生活習(xí)慣”的調(diào)查,以計(jì)算每戶(hù)的碳月排放量。若月排放量符合低碳標(biāo)準(zhǔn)的稱(chēng)為“低碳族”,否則稱(chēng)為“非低碳族”。若小區(qū)內(nèi)有至少75%的住戶(hù)屬于“低碳族”,則稱(chēng)這個(gè)小區(qū)為“低碳小區(qū)”,否則稱(chēng)為“非低碳小區(qū)”。已知備選的5個(gè)居民小區(qū)中有三個(gè)非低碳小區(qū),兩個(gè)低碳小區(qū)。
(I)求所選的兩個(gè)小區(qū)恰有一個(gè)為“非低碳小區(qū)”的概率;
(Ⅱ)假定選擇的“非低碳小區(qū)”為小區(qū),調(diào)查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經(jīng)過(guò)同學(xué)們的大力宣傳,三個(gè)月后,又進(jìn)行了一次調(diào)查,數(shù)據(jù)如圖2所示,問(wèn)這時(shí)小區(qū)是否達(dá)到“低碳小區(qū)”的標(biāo)準(zhǔn)?

(1) (2)三個(gè)月后小區(qū)達(dá)到了“低碳小區(qū)”標(biāo)準(zhǔn)

解析試題分析:解:(Ⅰ)設(shè)三個(gè)“非低碳小區(qū)”為,兩個(gè)“低碳小區(qū)”為    1分
表示選定的兩個(gè)小區(qū),
則從5個(gè)小區(qū)中任選兩個(gè)小區(qū),所有可能的結(jié)果有10個(gè),它們是,,,,,  ,,,.                 4分
表示:“選出的兩個(gè)小區(qū)恰有一個(gè)為非低碳小區(qū)”這一事件,則中的結(jié)果有6個(gè),它們是:,,, ,,.    6分
故所求概率為.          7分
(II)由圖1可知月碳排放量不超過(guò)千克的成為“低碳族”.           9分
由圖2可知,三個(gè)月后的低碳族的比例為,   11分
所以三個(gè)月后小區(qū)達(dá)到了“低碳小區(qū)”標(biāo)準(zhǔn).  12分
考點(diǎn):直方圖,古典概型
點(diǎn)評(píng):本題主要考查了列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,以及頻率分布直方圖,同時(shí)考查了識(shí)圖能力,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

近幾年來(lái),我國(guó)許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨。現(xiàn)由天氣預(yù)報(bào)得知,某地在未來(lái)3天的指定時(shí)間的降雨概率是:前2天均為50%,后1天為80%.3天內(nèi)任何一天的該指定時(shí)間沒(méi)有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.求不需要人工降雨的天數(shù)x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某食品加工廠甲,乙兩個(gè)車(chē)間包裝小食品,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一袋食品,稱(chēng)其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說(shuō)明理由)?
(2)根據(jù)數(shù)據(jù)估計(jì)這兩個(gè)車(chē)間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個(gè)車(chē)間的技術(shù)水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某班有6名班干部,其中男生4人,女生2人,任選選3人參加學(xué)校的義務(wù)勞動(dòng)。
(1)求男生甲或女生乙被選中的概率
(2)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B︱A)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三人獨(dú)立破譯同一密碼,已知三人各自破譯出密碼的概率分別為,且他們是否譯出密碼互不影響。
(1)求恰有兩人破譯出密碼的概率;
(2)“密碼被破譯”與“密碼未被破譯”的概率那個(gè)大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為豐富高三學(xué)生的課余生活,提升班級(jí)的凝聚力,某校高三年級(jí)6個(gè)班(含甲、乙)舉行唱歌比賽.比賽通過(guò)隨機(jī)抽簽方式?jīng)Q定出場(chǎng)順序.
求:(1)甲、乙兩班恰好在前兩位出場(chǎng)的概率;
(2)比賽中甲、乙兩班之間的班級(jí)數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了防止受污染的產(chǎn)品影響我國(guó)民眾的身體健康,要求產(chǎn)品在進(jìn)入市場(chǎng)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷(xiāo)售,否則不能銷(xiāo)售.已知某產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.
(Ⅰ)求該產(chǎn)品不能銷(xiāo)售的概率;
(Ⅱ)如果產(chǎn)品可以銷(xiāo)售,則每件產(chǎn)品可獲利40元;如果產(chǎn)品不能銷(xiāo)售,則每件產(chǎn)品虧損80元(即獲利-80元).已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利X元,求X的分布列,并求出均值E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對(duì)各種不同的搭配方式作比較。在試制某種牙膏新品種時(shí),需要選用兩種不同的添加劑,F(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用。根據(jù)試驗(yàn)設(shè)計(jì)原理,通常首先要隨機(jī)選取兩種不同的添加劑進(jìn)行搭配試驗(yàn)。用表示所選用的兩種不同的添加劑的芳香度之和。
(Ⅰ)寫(xiě)出的分布列;(以列表的形式給出結(jié)論,不必寫(xiě)計(jì)算過(guò)程)
(Ⅱ)求的數(shù)學(xué)期望。(要求寫(xiě)出計(jì)算過(guò)程或說(shuō)明道理)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)盒子裝有6張卡片,上面分別寫(xiě)著如下6個(gè)定義域?yàn)镽的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案