為豐富高三學生的課余生活,提升班級的凝聚力,某校高三年級6個班(含甲、乙)舉行唱歌比賽.比賽通過隨機抽簽方式?jīng)Q定出場順序.
求:(1)甲、乙兩班恰好在前兩位出場的概率;
(2)比賽中甲、乙兩班之間的班級數(shù)記為,求的分布列和數(shù)學期望.
科目:高中數(shù)學 來源: 題型:解答題
某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | 30 | 25 | 10 | ||
結(jié)算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
“中國式過馬路”存在很大的交通安全隱患.某調(diào)
查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路
人進行了問卷調(diào)查,得到了如下列聯(lián)表:
| 男性 | 女性 | 合計 |
反感 | 10 | | |
不反感 | | 8 | |
合計 | | | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某部門對當?shù)爻青l(xiāng)居民進行了主題為“你幸福嗎?”的幸福指數(shù)問卷調(diào)査,并在已被問卷調(diào)查的居民中隨機抽選部分居民參加“幸福職業(yè)”或“幸福愿景”的座談會,被邀請的居民只能選擇其中一場座談會參加.已知A小區(qū)有1人,B小區(qū)有3人收到邀請并將參加一場座談會,若A小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是, B小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是.
(Ⅰ)求A、B兩個小區(qū)已收到邀請的人選擇“幸福愿景”座談會的人數(shù)相等的概率;
(Ⅱ)在參加“幸福愿景”座談會的人中,記A、B兩個小區(qū)參會人數(shù)的和為,試求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某班同學利用寒假在5個居民小區(qū)內(nèi)選擇兩個小區(qū)逐戶進行一次“低碳生活習慣”的調(diào)查,以計算每戶的碳月排放量。若月排放量符合低碳標準的稱為“低碳族”,否則稱為“非低碳族”。若小區(qū)內(nèi)有至少75%的住戶屬于“低碳族”,則稱這個小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”。已知備選的5個居民小區(qū)中有三個非低碳小區(qū),兩個低碳小區(qū)。
(I)求所選的兩個小區(qū)恰有一個為“非低碳小區(qū)”的概率;
(Ⅱ)假定選擇的“非低碳小區(qū)”為小區(qū),調(diào)查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經(jīng)過同學們的大力宣傳,三個月后,又進行了一次調(diào)查,數(shù)據(jù)如圖2所示,問這時小區(qū)是否達到“低碳小區(qū)”的標準?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某市為了推動全民健身運動在全市的廣泛開展,該市電視臺開辦了健身競技類欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒有影響,通過關(guān)卡者即可獲獎,F(xiàn)有甲、乙、丙人參加當天的闖關(guān)比賽,已知甲獲獎的概率為,乙獲獎的概率為,丙獲獎而甲沒有獲獎的概率為。
(Ⅰ)求三人中恰有一人獲獎的概率;
(Ⅱ)求三人中至少有兩人獲獎的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某高校在2011年的自主招生考試成績中隨機抽取 100名學生的筆試成績,按成績分組,得到的頻率分布表如下所示.
(1)請先求出頻率分布表中①,②位置相應(yīng)的數(shù)據(jù),再完成下列頻率分布直方圖;并確定中位數(shù)。(結(jié)果保留2位小數(shù))
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的條件下,學校決定在6名學生中隨機抽取2名學生接受考官進行面試,求第4組至少有一名學生被考官A面試的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某種家用電器每臺的銷售利潤與該電器的無故障時間(單位:年)有關(guān),若,則銷售利潤為0元;若,則銷售利潤為100元,若,則銷售利潤為200元.設(shè)每臺該種電器的無故障使用時間,,這三種情況發(fā)生的概率分別為,又知為方程的兩根,且.
(1)求的值;
(2)記表示銷售兩臺這種家用電器的銷售利潤總和,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在一次購物抽獎活動中,假設(shè)某10張獎券中有一等獎卷1張,可獲價值50元的獎品;有二等獎卷3張,每張可獲價值10元的獎品;其余6張沒有獎。某顧客從這10張中任抽2張,求:(1)該顧客中獎的概率;(2)該顧客獲得的獎品總價值X(元)的分布列和數(shù)學期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com