分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合求得最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≥-2}\\{3x-2y≤3}\end{array}\right.$,做出可行域如圖,
化目標函數(shù)z=x+2y為直線方程的斜截式y(tǒng)=-$\frac{1}{2}$x+$\frac{z}{2}$.
由圖可知,當直線y=-$\frac{1}{2}$x+$\frac{z}{2}$過可行域內(nèi)的點B時,直線在y軸上的截距最大,z最大.
聯(lián)立$\left\{\begin{array}{l}{x-2y=-2}\\{3x-2y=3}\end{array}\right.$,解得A($\frac{5}{2}$,$\frac{9}{4}$),
則zmax=$\frac{5}{2}$+2×$\frac{9}{4}$=7.
故答案為:7.
點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1<x2 | B. | x1>x2 | C. | ${x_1}^2<{x_2}^2$ | D. | ${x_1}^2>{x_2}^2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{4}$,+∞) | B. | [$\frac{π}{4}$,$\frac{5π}{12}$) | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | [$\frac{π}{4}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{6}+\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com