【題目】已知函數(shù)與的圖象在點(diǎn)處有相同的切線.
(Ⅰ)若函數(shù)與的圖象有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn), ,且,證明: .
【答案】(Ⅰ);(Ⅱ)證明過程見解析;
【解析】(Ⅰ)首先根據(jù)兩函數(shù)在某點(diǎn)處有相同的切線,建立關(guān)于兩函數(shù)解析式中參數(shù)的方程,求得兩函數(shù)的解析式,再由題意構(gòu)造新函數(shù),將問題轉(zhuǎn)化為新函數(shù)的單調(diào)性與最值問題進(jìn)行求解;(Ⅱ)由題意,可將問題轉(zhuǎn)化為其導(dǎo)數(shù)的兩個(gè)根,再根據(jù)其函數(shù)的單調(diào)性,從而證明不等式立.
試題解析:(Ⅰ)因?yàn)?/span>, ,根據(jù)題意,得解得
所以.
設(shè),則,
當(dāng)時(shí), ,當(dāng)時(shí), ,
所以,
又因?yàn)?/span>→時(shí), →;當(dāng)→時(shí), →,
故欲使兩圖象有兩個(gè)交點(diǎn),只需, ,
所以實(shí)數(shù)的取值范圍為.
(Ⅱ)由題意,函數(shù),其定義域?yàn)?/span>,
,
令,得,其判別式,
函數(shù)有兩個(gè)極值點(diǎn), ,等價(jià)于方程在內(nèi)有兩不等實(shí)根,又,故.
所以,且, ,
,
令, ,
則,
由于,∴,故在上單調(diào)遞減.
故.
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于、兩點(diǎn),以為對角線作正方形,記直線與軸的交點(diǎn)為,問、兩點(diǎn)間距離是否為定值?如果是,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人),如莖葉圖所示,其中一個(gè)數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率;
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識(shí)學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了位觀眾的周均學(xué)習(xí)成語知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對照表(如下表所示),
年齡x(歲) | ||||
周均學(xué)習(xí)成語知識(shí)時(shí)間y(小時(shí)) |
由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為歲觀眾周均學(xué)習(xí)成語知識(shí)時(shí)間.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教研機(jī)構(gòu)隨機(jī)抽取某校20個(gè)班級(jí),調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】男女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 滿足 (其中 , ).
(1)求 的表達(dá)式;
(2)對于函數(shù) ,當(dāng) 時(shí), ,求實(shí)數(shù) 的取值范圍.
(3)當(dāng) 時(shí), 的值為負(fù)數(shù),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,右焦點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)關(guān)于軸的對稱點(diǎn)為 ,求證: 三點(diǎn)共線;
(3) 當(dāng)面積最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)().
(1)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)的極值點(diǎn);
(3)令, ,設(shè), , 是曲線上相異三點(diǎn),其中.求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com